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Severe acute respiratory syndrome-related coronavirus 2 
(SARS-CoV-2) emerged in late 2019 in Wuhan, China (1, 2). 
Since then, the virus has spread to all corners of the world, 
causing almost 150 million cases of coronavirus disease 2019 
(COVID-19) and over three million deaths by the end of April 
2021. Throughout the pandemic, it has been noted that Africa 
accounts for a relatively low proportion of reported cases and 
deaths – by the end of April 2021, there had been ~4.5 million 
cases and ~120000 deaths on the continent, corresponding to 
less than 4% of the global burden. However, emerging data 
from seroprevalence surveys and autopsy studies in some 

African countries suggests that the true number of infections 
and deaths may be several fold higher than reported (3, 4). In 
addition, a recent analysis has shown that the second wave 
of the pandemic was more severe than the first wave in many 
African countries (5). 

The first cases of COVID-19 on the African continent were 
reported in Nigeria, Egypt and South Africa between mid-
February and early March 2020, and most countries had re-
ported cases by the end of March 2020 (6–8). These early 
cases were concentrated amongst airline travellers returning 
from regions of the world with high levels of community 

Medicine, Nagasaki University, Nagasaki, Japan. 76Central Public Health Laboratories (CPHL), Kampala, Uganda. 77Faculty of Medicine Ain Shams Research institute 
(MASRI), Ain Shams University, Cairo, Egypt. 78Charles Nicolle Hospital, Laboratory of Microbiology, National Influenza Center, 1006 Tunis, Tunisia. 79University of Tunis El 
Manar, Faculty of Medicine of Tunis, LR99ES09, 1007 Tunis, Tunisia. 80Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-
Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, Israel. 81Namibia Institute of Pathology, Windhoek, Namibia. 82Centre Interdisciplinaires 
de Recherches Medicales de Franceville (CIRMF), Franceville, Gabon. 83Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane 
University, New Orleans, LA, USA. 84Urban Health Collaborative, Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA. 85UHAS COVID-19 Testing and 
Research Centre, University of Health and Allied Sciences, Ho, Ghana. 86Rollins School of Public Health, Emory University, Atlanta, GA, USA. 87Anoual Laboratory, 
Casablanca, Morocco. 88Botswana Institute for Technology Research and Innovation, Gaborone, Botswana. 89New York University Grossman School of Medicine, New York 
City, NY, USA. 90Centre de Recherches Medicales de Lambarene (CERMEL), Lambarene, Gabon. 91Virology/Molecular Biology Department, Central Health Laboratory, 
Ministry of Health and Wellness, Mauritius. 92Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Cairo Egypt. 93Ministry of Health and 
Wellness, Gaborone, Botswana. 94Next Generation Sequencing Unit and Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, 
South Africa. 95National Reference Laboratory Lesotho, Maseru, Lesotho. 96Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, 
Kenya. 97Laboratorio de Investigaciones de Baney, Baney, Equatorial Guinea. 98Ifakara Health Institute, Dar-es-Salaam, Tanzania. 99Nigeria Centre for Disease Control, 
Abuja, Nigeria. 100Department of Medical Diagnostics, Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and 
Technology, Kumasi, Ghana. 101Department of Medical Laboratory Science, Niger Delta University, Bayelsa State, Nigeria. 102Systems and Biomedical Engineering 
Department, Faculty of Engineering, Cairo University, Cairo 12613, Egypt. 103King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia. 
104Biological Prevention Department, Main Chemical Laboratories, Egypt Army, Cairo, Egypt. 105PATH, Lusaka, Zambia. 106Department of Biotechnology, High Institute of 
Biotechnology of Sidi Thabet, University of Manouba, BP-66, 2020 Ariana-Tunis, Tunisia. 107Genomic Center for Human Pathologies (GENOPATH), Faculty of Medicine and 
Pharmacy, Mohammed V University, Rabat, Morocco. 108Rwanda National Joint Task Force COVID-19, Rwanda Biomedical Centre, Ministry of Health, Kigali, Rwanda. 
109School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda. 110Instituto Nacional de Saude (INS), Maputo, Mozambique. 
111National Health Laboratory Service (NHLS), Cape Town, South Africa. 112Computational Biology Division, Department of Integrative Biomedical Sciences, IDM, CIDRI Africa 
Wellcome Trust Centre, University of Cape Town, Cape Town, South Africa. 113Virology Laboratory, Alex Ekwueme Federal University Teaching Hospital, Abakaliki, Nigeria. 
114Department of Epidemiology and Community Health, Faculty of Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria. 115Alex 
Ekwueme Federal University Teaching Hospital, Abakaliki, Nigeria. 116Mayotte Hospital Center, Mayotte, France. 117Virology Service, Centre Pasteur of Cameroun, Yaounde, 
Cameroon. 118Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. 119Laboratoire de 
Recherche et d'Analyses Médicales de la Gendarmerie Royale, Rabat, Morocco. 120Clinical and Experimental Pharmacology Lab, LR16SP02, National Center of 
Pharmacovigilance, University of Tunis El Manar, Tunis, Tunisia. 121CHU Hedi Chaker Sfax, Service de Pneumologie, Tunis, Tunisia. 122Laboratoire de Recherche et d'Analyses 
Médicales de la Gendarmerie Royale, Rabat, Morocco. 123Central Public Health Laboratories (CPHL), Cairo, Egypt. 124Centre MURAZ, Ouagadougou, Burkina Faso. 125National 
Institute of Public Health of Burkina Faso (INSP/BF), Ouagadougou, Burkina Faso. 126National Reference Center for Respiratory Viruses, Molecular Genetics of RNA Viruses, 
UMR 3569 CNRS, University of Paris, Institut Pasteur, Paris, France. 127Sub-Saharan African Network For TB/HIV Research Excellence (SANTHE), Durban, South Africa. 
128Coordenação Geral de Laboratórios de Saúde Pública/Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, Distrito Federal, Brazil. 129World Health 
Organization, WHO Lesotho, Maseru, Lesotho. 130Med24 Medical Centre, Ruwa, Zimbabwe. 131Division of Human Genetics, Department of Pathology, University of Cape 
Town, Cape Town, South Africa. 132Center for Human Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda. 133Laboratory of Human 
Genetics, GIGA Research Institute, Liège, Belgium. 134National Health Laboratory, Gaborone, Botswana. 135MRC-University of Glasgow Centre for Virus Research, Glasgow, 
UK. 136Harvard T.H. Chan School of Public Health, Boston, MA, USA. 137Department of Global Health, University of Washington, Seattle, WA, USA. 

†These authors contributed equally to this work. *Corresponding author. Email: tulio@sun.ac.za 

The progression of the SARS-CoV-2 pandemic in Africa has so far been heterogeneous and the full impact 
is not yet well understood. Here, we describe the genomic epidemiology using a dataset of 8746 genomes 
from 33 African countries and two overseas territories. We show that the epidemics in most countries were 
initiated by importations predominantly from Europe, which diminished following the early introduction of 
international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and 
increasing mobility led to the emergence and spread within the continent of many variants of concern and 
interest, such as B.1.351, B.1.525, A.23.1 and C.1.1. Although distorted by low sampling numbers and blind 
spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise 
it could become a source for new variants. 
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transmission. Many African countries introduced early public 
health and social measures (PHSM), including international 
travel controls, quarantine for returning travellers, and inter-
nal lockdown measures to limit the spread of the virus and 
give health services time to prepare (5, 9). The initial phase 
of the epidemic was then heterogeneous with relatively high 
case numbers reported in North Africa and Southern Africa, 
and fewer cases reported in other regions. 

From the onset of the pandemic, genomic surveillance has 
been at the forefront of the COVID-19 response in Africa (10). 
Rapid implementation of SARS-CoV-2 sequencing by various 
laboratories in Africa enabled genomic data to be generated 
and shared from the early imported cases. In Nigeria, the first 
genome sequence was released just three days after the an-
nouncement of the first case (6). Similarly, in Uganda, a se-
quencing program was set up rapidly to facilitate virus 
tracing, and the collection of samples for sequencing began 
immediately upon confirmation of the first case (11). In South 
Africa, the network for genomic surveillance in South Africa 
(NGS-SA) was established in March 2020 and within weeks 
genomic analysis was helping to characterize outbreaks and 
community transmission (12). 

Genomic surveillance has also been critical for monitoring 
ongoing SARS-CoV-2 evolution and detection of new SARS-
CoV-2 variants in Africa. Intensified sampling by NGS-SA in 
the Eastern Cape Province of South Africa in November 2020, 
in response to a rapid resurgence of cases, led to the detection 
of B.1.351 (501Y.V2) (13). This variant was subsequently des-
ignated a variant of concern (VOC) by the World Health Or-
ganization (WHO), due to evidence of increased 
transmissibility (14) and resistance to neutralizing antibodies 
elicited by natural infection and vaccines (15–17). 

Here, we perform phylogenetic and phylogeographic anal-
ysis of SARS-CoV-2 genomic data from 33 African countries 
and two overseas territories to help characterize the dynam-
ics of the pandemic in Africa. We show that the early intro-
ductions were predominantly from Europe, but that as the 
pandemic progressed there was increasing spread between 
African countries. We also describe the emergence and 
spread of a number of key SARS-CoV-2 variants in Africa, and 
highlight how the spread of B.1.351 (501Y.V2) and other vari-
ants contributed to the more severe second wave of the pan-
demic in many countries. 
 
SARS-CoV-2 genomic data 
By 5 May 2021, 14504 SARS-CoV-2 genomes had been submit-
ted to the GISAID database (18) from 38 African countries 
and two overseas territories (Mayotte and Réunion) (Fig. 1A). 
Overall, this corresponds to approximately one sequence per 
~300 reported cases. Almost half of the sequences were from 
South Africa (n=5362), consistent with it being responsible 
for almost half of the reported cases in Africa. Overall, the 

number of sequences correlates closely with the number of 
reported cases per country (Fig. 1B). The countries/territories 
with the highest coverage of sequencing (defined as genomes 
per reported case) are Kenya (n=856, one sequence per ~203 
cases), Mayotte (n=721, one sequence per ~21 cases), and Ni-
geria (n=660, one sequence per ~250 cases). Although ge-
nomic surveillance started early in many countries, few have 
evidence of consistent sampling across the whole year. Half 
of all African genomes were deposited in the first ten weeks 
of 2021, suggesting intensified surveillance in the second 
wave following the detection of B.1.351/501Y.V2 and other 
variants (Fig. 1, C and D). 
 
Genetic diversity and lineage dynamics in Africa 
Of the 10326 genomes retrieved from GISAID by the end of 
March 2021, 8,746 genomes passed quality control (QC) and 
met the minimum metadata requirements. These genomes 
from Africa were compared in a phylogenetic framework with 
11891 representative genomes from around the world. Ances-
tral location state reconstruction of the dated phylogeny 
(hereafter referred to as discrete phylogeographic reconstruc-
tion) allowed us to infer the number of viral imports and ex-
ports between Africa and the rest of the world, and between 
individual African countries. African genomes in this study 
spanned the whole global genetic diversity of SARS-CoV-2, a 
pattern that largely reflects multiple introductions over time 
from the rest of the world (Fig. 2A). 

In total, we detected at least 757 (95% CI: 728 - 786) viral 
introductions into African countries between the start of 
2020 and February 2021, over half of which occurred before 
the end of May 2020. While the early phase of the pandemic 
was dominated by importations from outside Africa, predom-
inantly from Europe, there was then a shift in the dynamics, 
with an increasing number of importations from other Afri-
can countries as the pandemic progressed (Fig. 2, B and C). A 
rarefaction analysis in which we systematically subsampled 
genomes shows that vastly more introductions would have 
likely been identified with increased sampling in Africa or 
globally, suggesting that the introductions we identified are 
really just the “ears of the hippo,” or tip of the iceberg (fig. 
S1). 

South Africa, Kenya and Nigeria appear as major sources 
of importations into other African countries (Fig. 2D), alt-
hough this is likely to be influenced by these three countries 
having the greatest number of deposited sequences. Particu-
larly striking is the southern African region, where South Af-
rica is the source for a large proportion (~80%) of the 
importations to other countries in the region. The North Af-
rican region demonstrates a different pattern to the rest of 
the continent, with more viral introductions from Europe and 
Asia (particularly the Middle East) than from other African 
countries (fig. S2). 
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Africa has also contributed to the international spread of 
the virus with at least 324 (95% CI: 728 - 786) exportation 
events from Africa to the rest of the world detected in this 
dataset. Consistent with the source of importations, most ex-
ports were to Europe (41%), Asia (26%) and North America 
(14%). As with the number of importations exports were rel-
atively evenly distributed over the one year period (fig. S3). 
However, an increase in the number of exportation events oc-
curred between December 2020 and March 2021, which coin-
cided with the second wave of infections in Africa and with 
some relaxations of travel restrictions around the world. 

The early phase of the pandemic was characterized by the 
predominance of lineage B.1. This was introduced multiple 
times to African countries and has been detected in all but 
one of the countries included in this analysis. After its emer-
gence in South Africa, B.1.351 became the most frequently de-
tected SARS-CoV-2 lineage found in Africa (n=1,769, ~20%) 
(Fig. 1C). It was first sampled on 8 October 2020 in South 
Africa (13) and has since spread to 20 other African countries. 

As air travel came to an almost complete halt in 
March/April 2020, the number(s) of detectable viral imports 
into Africa decreased and the pandemic entered a phase that 
was characterized in sub-Saharan Africa by sustained low lev-
els of within-country movements and occasional interna-
tional viral movements between neighboring countries, 
presumably via road and rail links between these. Though 
some border posts between countries were closed during the 
initial lockdown period (table S1), others remained open to 
allow trade to continue. Regional trade in southern Africa 
was only slightly impacted by lockdown restrictions and 
quickly rebounded to pre-pandemic levels (fig. S4) following 
the relaxation of restrictions between June 2020 and Decem-
ber 2020. 

Although lineage A viruses were imported into several Af-
rican countries, they only account for 1.3% of genomes sam-
pled in Africa. Despite lineage A viruses initially causing 
many localized clustered outbreaks, each the result of inde-
pendent introductions to several countries (e.g., Burkina 
Faso, Cote d’Ivoire and Nigeria), they were later largely re-
placed by lineage B viruses as the pandemic evolved. This is 
possibly due to the increased transmissibility of B lineage vi-
ruses by virtue of the D614G mutation in spike (19, 20). How-
ever, there is evidence of an increasing prevalence of lineage 
A viruses in some African countries (11). In particular, A.23.1 
emerged in East Africa and appears to be increasing rapidly 
in prevalence in Uganda and Rwanda (11). Furthermore, a 
highly divergent variant from lineage A was recently identi-
fied in Angola from individuals arriving from Tanzania (21). 
 
Emergence and spread of new SARS-CoV-2 variants 
In order to determine how some of the key SARS-CoV-2 vari-
ants are spreading within Africa, we performed 

phylogeographic analyses on the VOC B.1.351, the variant of 
interest (VOI) B.1.525, and on two additional variants that 
emerged and that we designated as VOIs for this analysis 
(A.23.1 and C.1.1). These African VOCs and VOIs have multi-
ple mutations on Spike glycoprotein and molecular clock 
analysis of these four datasets provided strong evidence that 
these four lineages are evolving in a clocklike manner (Fig. 3, 
A and B). 

B.1.351 was first sampled in South Africa in October 2020, 
but phylogeographic analysis suggests that it emerged earlier, 
around August 2020. It is defined by ten mutations in the 
spike protein, including K417N, E484K and N501Y in the re-
ceptor-binding domain (Fig. 3B). Following its emergence in 
the Eastern Cape, it spread extensively within South Africa 
(Fig. 4A). By November 2020, the variant had spread into 
neighboring Botswana and Mozambique and by December 
2020 it had reached Zambia and Mayotte. Within the first 
three months of 2021, further exports from South Africa into 
Botswana, Zimbabwe, Mozambique and Zambia occurred. By 
March 2021, B.1.351 had become the dominant lineage within 
most Southern African countries as well as the overseas ter-
ritories of Mayotte and Réunion (fig. S5). Our phylogeo-
graphic reconstruction also demonstrates movement of 
B.1.351 into East and Central Africa directly from southern 
Africa. Our discrete phylogeographic analysis of a wider sam-
ple of B.1.351 isolates demonstrate the spread of the lineage 
into West Africa. This patient from West Africa had a known 
travel history to Europe so it possible the patient acquired 
the infection while in Europe or in transit and not from other 
African sources (fig. S6). 

B.1.525 is a VOI defined by six substitutions in the spike 
protein (Q52R, A67V, E484K, D614G, O677H and F888L), and 
two deletions in the N-terminal domain (HV69-70Δ and 
Y144Δ). This was first sampled in the United Kingdom in 
mid-December 2020, but our phylogeographic reconstruction 
suggests that the variant originated in Nigeria in November 
2020 [95% highest posterior density (HPD) 2020-11-01 to 
2020-12-03] (Fig. 4B). Since then it has spread throughout 
much of Nigeria and neighboring Ghana. Given sparse sam-
pling from other neighboring countries within West and Cen-
tral Africa (Fig. 1, A and C), the extent of the spread of this 
VOI in the region is not clear. Beyond Africa, this VOI has 
spread to Europe and the US (fig. S6). 

We designated A.23.1 and C.1.1 as VOIs for the purposes of 
this analysis, as they present good examples of the continued 
evolution of the virus within Africa (11, 13). Lineage A.23, 
characterized by three spike mutations (F157L, V367F and 
Q613H), was first detected in a Ugandan prison in Amuru in 
July 2020 (95% HPD: 2020-07-15 to 2020-08-02). From there, 
the lineage was transmitted to Kitgum prison, possibly facil-
itated by the transfer of prisoners. Subsequently, the A.23 lin-
eage spilled into the general population and spread to 
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Kampala, adding other spike mutations (R102I, L141F, 
E484K, P681R) along with additional mutations in nsp3, 
nsp6, ORF8 and ORF9, prompting a new lineage classifica-
tion, A.23.1 (Fig. 3, A and B). Since the emergence of A.23.1 in 
September 2020 (95% HPD: 2020-09-02 to 2020-09-28), it has 
spread regionally into neighboring Rwanda and Kenya and 
has now also reached South Africa and Botswana in the south 
and Ghana in the west (Fig. 4C). However, our phylogeo-
graphic reconstruction of A.23.1 suggests that the introduc-
tion into Ghana may have occurred via Europe (fig. S6), 
whereas the introductions into southern Africa likely oc-
curred directly from East Africa. This is consistent with epi-
demiological data suggesting that the case detected in South 
Africa was a contact of an individual who had recently trav-
elled to Kenya. 

Lineage C.1 emerged in South Africa in March 2020 (95% 
HPD: 2020-03-13 to 2020-04-17) during a cluster outbreak 
prior to the first wave of the epidemic (13). C.1.1 is defined by 
the spike mutations S477N, A688S, M1237I and also contains 
the Q52R and A67V mutations similar to B.1.525 (Fig. 3B). A 
continuous trait phylogeographic reconstruction of the move-
ment dynamics of these lineages suggests that C.1 emerged in 
the city of Johannesburg and spread within South Africa dur-
ing the first wave (Fig. 4D). Independent exports of C.1 from 
South Africa led to regional spread to Zambia (June-July, 
2020) and Mozambique (July-August 2020), and the evolu-
tion to C.1.1 seems to have occurred in Mozambique around 
mid-September 2020 (95% HPD: 2020-09-07 to 2020-10-05). 
In depth analysis of SARS-CoV-2 genotypes from Mozam-
bique suggest that the C.1.1. lineage was the most prevalent 
in the country until the introduction of B.1.351, which has 
dominated the epidemic since (fig. S5). 

The VOC B.1.1.7, which was first sampled in Kent, England 
in September 2020 (22), has also increased in prevalence in 
several African countries (fig. S5) To date, this VOC has been 
detected in eleven African countries, as well as the Indian 
Ocean islands of Mauritius and Mayotte (fig. S7). The time-
resolved phylogeny suggests that this lineage was introduced 
into Africa on at least 16 occasions between November 2020 
and February 2021 with evidence of local transmission in Ni-
geria and Ghana. 
 
Conclusions 
Our phylogeographic reconstruction of past viral dissemina-
tion patterns suggests a strong epidemiological linkage be-
tween Europe and Africa, with 64% of detectable viral 
imports into Africa originating in Europe and 41% of detect-
able viral exports from Africa landing in Europe (Fig. 1C). 
This phylogeographic analysis also suggests a changing pat-
tern of viral diffusion into and within Africa over the course 
of 2020. In almost all instances the earliest introductions of 
SARS-CoV-2 into individual African countries were from 

countries outside Africa. 
High rates of COVID-19 testing and consistent genomic 

surveillance in the south of the continent have led to the early 
identification of VOCs such as B.1.351 and VOIs such as C.1.1 
(13). Since the discovery of these southern African variants, 
several other SARS-CoV-2 VOIs have emerged in different 
parts of the world, including elsewhere on the African conti-
nent, such as B.1.525 in West Africa and A.23.1 in East Africa. 
There is strong evidence that both of these VOIs are rising in 
frequency in the regions where they have been detected, 
which suggests that they may possess higher fitness than 
other variants in these regions. Although more focused re-
search on the biological properties of these VOIs is needed to 
confirm whether they should be considered VOCs, it would 
be prudent to assume the worst and focus on limiting their 
spread. It will be important to investigate how these different 
variants compete against one another if they occupy the same 
region. 

Our focused phylogenetic analysis of the B.1.351 lineage 
revealed that in the final months of 2020 this variant spread 
from South Africa into neighboring countries, reaching as far 
north as the DRC by February 2021. This spread may have 
been facilitated through rail and road networks that form 
major transport arteries linking South Africa’s ocean ports to 
commercial and industrial centres in Botswana, Zimbabwe, 
Zambia and the southern parts of the DRC. The rapid, appar-
ently unimpeded spread of B.1.351 into these countries sug-
gests that current land-border controls that are intended to 
curb the international spread of the virus are ineffective. Per-
haps targeted testing of cross-border travellers, genotyping of 
positive cases and the focused tracking of frequent cross-bor-
der travellers such as long distance truckers, would more ef-
fectively contain the spread of future VOCs and VOIs that 
emerge within this region. 

The dominance of VOIs and VOCs in Africa has important 
implications for vaccine rollouts on the continent. For one, 
slow rollout of vaccines in most African countries creates an 
environment in which the virus can replicate and evolve: this 
will almost certainly produce additional VOCs, any of which 
could derail the global fight against COVID-19. On the other 
hand, with the already widespread presence of known vari-
ants, difficult decisions balancing reduced efficacy and avail-
ability of vaccines have to be made. This also highlights how 
crucial it is that trials are done. From a public health perspec-
tive, genomic surveillance is only one item in the toolkit of 
pandemic preparedness. It is important that such work is 
closely followed by genotype to phenotype research to deter-
mine the actual significance of continued evolution of SARS-
CoV-2 and other emerging pathogens. 

The rollout of vaccines across Africa has been painfully 
slow (figs. S8 and S9). There have, however, been notable suc-
cesses that suggest the situation is not hopeless. The small 
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island nation of the Seychelles had vaccinated 70% of its pop-
ulation by May 2021. Morocco has kept pace with many de-
veloped nations and by mid-March had vaccinated ~16% of 
its population. Rwanda, one of Africa’s most resource con-
strained countries, had, within three weeks of obtaining its 
first vaccine doses in early March, managed to provide first 
doses to ~2.5% of its population. For all other African coun-
tries, at the time of writing, vaccine coverage (first dose) was 
<1.0% of the general population. 

The effectiveness of molecular surveillance as a tool for 
monitoring pandemics is largely dependent on continuous 
and consistent sampling through time, rapid virus genome 
sequencing and rapid reporting. When this is achieved, mo-
lecular surveillance can ensure the early detection of chang-
ing pandemic characteristics. Further, when such changes 
are discovered, molecular surveillance data can also guide 
public health responses. In this regard, the molecular surveil-
lance data that are being gathered by most African countries 
are less useful than they could be. For example, the time-lag 
between when virus samples are taken and when sequences 
for these samples are deposited in sequence repositories is so 
great in some cases that the primary utility of genomic sur-
veillance data is lost (fig. S10). This lag is driven by several 
factors depending on the laboratory or country in question: 
(i) lack of reagents due to disruptions in global supply chains, 
(ii) lack of equipment and infrastructure within the originat-
ing country, (iii) scarcity of technical skills in laboratory 
methods or bioinformatic support, and (iv) hesitancy by 
some health officials to release data. More recent sampling 
and prompt reporting is crucial to reveal the genetic charac-
teristics of currently circulating viruses in these countries. 

The patchiness of African genomic surveillance data is 
therefore the main weakness of our study. However, there is 
evidence that the situation is improving, with ~50% of Afri-
can SARS-CoV-2 genome sequences having been submitted to 
the GISAID database within the first 10-weeks of 2021. While 
the precise factors underlying this surge in sequencing effort 
are unclear, important drivers are almost certainly both in-
creased global interest in genomic surveillance following the 
discovery of multiple VOCs and VOIs since December 2020. 
We cannot reject that the observed increase in exports from 
Africa may be due to intensified sequencing activity following 
the detection of variants around the world. It is important to 
note here that phylogeographic reconstruction of viral spread 
is highly dependent on sampling where there is the caveat 
that the exact routes of viral movements between countries 
cannot be inferred if there is no sampling in connecting coun-
tries. Furthermore, our efforts to reconstruct the movement 
dynamics of SARS-CoV-2 across the continent are almost cer-
tainly biased by uneven sampling between different African 
countries. It is not a coincidence that we identified South Af-
rica, Kenya and Nigeria, which have sampled and sequenced 

the most SARS-CoV-2 genomes, as major sources of viral 
transmissions between sub-Saharan African countries. How-
ever, these countries had also the highest number of infec-
tions, which may decrease the sampling biases (Fig. 1A). 

The reliability of genomic surveillance as a tool to prevent 
the emergence and spread of dangerous variants is depend-
ent on the intensity with which it is embraced by national 
public health programs. As with most other parts of the 
world, the success of genomic surveillance in Africa requires 
more samples being tested for COVID-19, higher proportions 
of positive samples being sequenced within days of sampling, 
and persistent analyses of these sequences for concerning sig-
nals such as (i) the presence of novel non-synonymous muta-
tions at genomic sites associated with pathogenicity and 
immunogenicity, (ii) evidence of positive selection at codon 
sites where non-synonymous mutations are observed, and 
(iii) evidence of lineage expansions. In spite of limited sam-
pling, Africa has identified many of the VOCs and VOIs that 
are being transmitted across the world. Detailed characteri-
zation of the variants and their impact on vaccine induced 
immunity is of extreme importance. If the pandemic is not 
controlled in Africa, we may see the production of vaccine 
escape variants that may profoundly affect the population in 
Africa and across the world. 
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Fig. 1. SARS-CoV-2 sequences in Africa. (A) Map of the African continent with the number of SARS-
CoV-2 sequences reflected in GISAID as of 5 May 2021. (B) Regression plot of the number of viral 
sequences vs. the number of reported COVID-19 cases in various African countries as of 5 May 2021. 
Countries with >500 sequences are labeled. (C) Progressive distribution of the top 20 PANGO 
lineages on the African continent. (D) Temporal sampling of SARS-CoV-2 sequences in African 
countries (ordered by total number of sequences) through time with VOCs of note highlighted and 
annotated according to their PANGO lineage assignment. 
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  Fig. 2. Phylogenetic reconstruction of the SARS-CoV-2 pandemic on the Africa continent.  

(A) Time resolved Maximum Likelihood tree containing 8,746 high quality African SARS-CoV-2 near-
full-genome sequences analyzed against a backdrop of global reference sequences. Variants of 
interest (VOI) and concern (VOC) are highlighted on the phylogeny. (B) Sources of viral introductions 
into African countries characterized as external introductions from the rest of the world vs internal 
introductions from other African countries. (C) Total external viral introductions over time into 
Africa. (D) The number of viral imports and exports into and out of various African countries depicted 
as internal (between African countries in pink) or external (between African and non-African 
countries in blue and grey). 
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Fig. 3. Genetic profile of VOCs and VOIs under investigation. (A) Root-to-tip regression plots for four lineages 
of interest. C.1 and A.23 show continued evolution into VOIs C.1.1 and A.23.1 respectively. (B) Genome maps of 
four VOCs/VOIs where the spike region is shown in detail and in color and the rest of the genome is shown in 
grey. ORF: open reading frame, NTD: N-terminal domain, RBD: receptor binding domain, RBM: receptor binding 
motif, SD1: subdomain 1 and SD2: subdomain 2. 
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Fig. 4. Phylogeographic reconstruction of the spread of four VOCs/VOIs across the African 
continent using sequences showing strict continuous transmission across geographical regions. 
(A to D) Curved lines denote the direction of transmission in the anti-clockwise direction. Solid lines 
show transmission paths as inferred by phylogeographic reconstruction and colored by date, 
whereas dashed lines show known travel history of the particular case considered. 
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Materials and Methods 
  
Ethics statement 
This project relied on sequence data and associated metadata publicly shared by the GISAID data repository 
and adhere to the term and conditions laid out by GISAID. The African samples processed in this study were 
obtained anonymously from material exceeding the routine diagnosis of SARS-CoV-2 in African public 
health laboratories that belong to the public network within the Africa CDC. Individual institutional review 
board (IRB) references or material transfer agreements (MTAs) for countries are list below.  
  
Angola - (MTA - CON8260), Botswana - Genomic surveillance in Botswana was approved by the Health 
Research and Development Committee (Protocol HPDME 13/18/1), Nigeria – (NHREC/01/01/2007), Mali - 
study of the sequence of SARS-CoV-2 isolates in Mali - Letter of Ethical Committee (N0-2020 
/201/CE/FMPOS/FAPH of 09/17/2020), Mozambique - (MTA - CON7800), Malawi - (MTA - CON8265), 
South Africa - The use of South African samples for sequencing and genomic surveillance were approved by 
University of KwaZulu-Natal Biomedical Research Ethics Committee (ref. BREC/00001510/2020); the 
University of the Witwatersrand Human Research Ethics Committee (HREC) (ref. M180832); Stellenbosch 
University HREC (ref. N20/04/008_COVID-19); and the University of Cape Town HREC (ref. 383/2020), 
Tunisia - For sequences derived from sampling in Tunisia, all patients provided their informed consent to use 
their samples for sequencing of the viral genomes. The ethical agreement was provided to the research project 
ADAGE (PRFCOVID19GP2) by the Committee of protection of persons (Tunisian Ministry of Health) under 
the reference (CPP SUD N 0265/2020), Uganda - The use of samples and sequences from Uganda were 
approved by the Uganda Virus Research Institute - Research and Ethics Committee UVRI-REC Federalwide 
Assurance [FWA] FWA No. 00001354, study reference - GC/127/20/04/771 and by the Uganda National 
Council for Science and Technology, reference number - HS936ES) and Zimbabwe (MTA - CON8271).   
  
Data quality control 
10326 African complete and near-complete genome sequences were retrieved from GISAID on 16 March 
2021 (2pm SAST). Sampling strategies in various participating countries are outlined in Supplementary Table 
S3. Prior to phylogenetic reconstruction we removed low quality sequences, which included those identified 
as being of low quality by NextClade (n=18; https://clades.nextstrain.org), those with missing sampling dates 
(n = 189), those with <90% coverage (n = 1017),  those with > 40 SNPs (n = 39), those with  >10 ambiguous 
base-calls per genome (n = 128), and those with clustered SNPs (n = 189). 
  
High quality African near-complete genome sequences (n=8,746) were aligned against an extensive reference 
dataset of 11891 SARS-CoV-2 sequences from around the world that included sequences sampled since the 
start of the outbreak, including all those sampled up until the end of February 2020. 
  
Phylogenetic reconstruction 
The African sequences were aligned against the reference panel using MAFFT v7.471(24). The first 100 and 
last 50 bases as well as positions 13402, 24389 and 24390 relative to the reference strain Wuhan-Hu-1 (18,(25) 
were masked as these three sites are known for primer contamination resulting in ambiguity. The subsequent 
alignment was used to infer a maximum likelihood (ML) phylogenetic tree in IQTREE v1.6.9(26). The tree 
was inferred with the general time reversible (GTR) model of nucleotide substitution and a proportion of 
invariable sites (+I). To infer some confidence measures of branches in the phylogeny and for subsequent 
downstream analyses we performed 100 bootstrap replicates using Booster(27). 
  
The raw ML tree topology was used to estimate the number of viral transmission events between various 
Africa countries and the rest of the world. TreeTime(28) was used to transform this ML tree topology into a 
dated tree using a constant rate of 8.0 x 10-4 nucleotide substitutions per site per year , after the exclusion of 
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outlier sequences. A migration model was fitted to the resulting time-scaled phylogenetic tree in TreeTime, 
mapping country and regional locations to tips and internal nodes. Using the resulting annotated tree topology 
we could count the number of transitions between Africa and the rest of the world. 
  
Lineage classification 
We used the dynamic lineage classification method called Phylogenetic Assignment of Named Global 
Outbreak LINeages (PANGOLIN)(29). This was aimed at identifying the most epidemiologically important 
lineages of SARS-CoV-2 circulating within the African continent and to identify the lineage dynamics within 
African regions and across the continent. For the purpose of clarity, we define a lineage as a linear chain of 
viruses in a phylogenetic tree showing connection from the ancestor to the most recent descendant. A unique 
variant refers to a genetically distinct virus with different mutations to other viruses of the same lineage. 
Variants of concern (VOC) and variants of interest (VOI) were designated based on the World Health 
Organization framework as of 13 April 2021. We included two other lineages, namely A.23.1 and C.1.1, and 
designated them as VOI for the purposes of this analysis. We included these two as they demonstrated 
continued evolution of African lineages into potentially more transmissible variants with the acquisition of 
mutations in the spike glycoprotein. 
  
Phylogeographic reconstruction 
VOCs and VOIs that emerged on the African continent (B.1.351, B.1.525, A.23.1 and C.1.1) were marked on 
the time-resolved phylogenetic tree constructed above. Genome sequences from these four lineages were 
extracted for phylogeographic reconstruction. First, we investigated the dynamics of SARS-CoV-2 infection 
and virus lineage movements over longer distances (through Europe or East to West Africa) using a sampled 
set of time-scaled phylogenies and the sampling location of each geo-referenced SARS-CoV-2 sequence. We 
discretized sequence sampling locations by considering distinct geographic areas and/or regions (in and 
outside Africa) as shown in Supplementary Figure S6. 
  
Initially, discrete phylogeographic reconstructions were conducted for all VOC and VOI using the asymmetric 
discrete trait model implemented in BEASTv1.10.4(30). From those estimates we then modelled the 
phylogenetic diffusion and spread of the lineages on the African continent by analysing localized transmission 
(between neighbouring countries) using a flexible relaxed random walk (RRW) diffusion model(31) that 
accommodates branch-specific variation in rates of dispersal with a Cauchy distribution. For each sequence, 
latitude and longitude coordinates were attributed to the lowest administrative level locator in GISAID. 
  
Multiple sequence alignments were performed for each lineage with MAFFT v7.471. Maximum likelihood 
trees for each of the alignments were inferred in IQTREE v1.6.9 (GTR+I). Prior to phylogeographic 
reconstruction each cluster/lineage was assessed for molecular clock signal in TempEst v1.5.3(32) following 
the removal of potential outliers that may violate the molecular clock assumption. Markov Chain Monte Carlo 
(MCMC) analyses were set up in BEAST v1.10.4 in duplicate for 100 million interactions and sampling every 
10000 steps in the chain. Convergence for each run was assessed in Tracer v1.7.1 (ESS for all relevant model 
parameters >200). Maximum clade credibility trees for each run were summarized using TreeAnnotator after 
discarding the initial 10% as burn-in. We used the R package “seraphim”(33) to extract and map 
spatiotemporal information embedded in the posterior trees. Note that a transmission link on the 
phylogeographic map can denote one or more transmission events depending on the phylogeographic 
inference. 
  
Sensitivity of introduction analysis to sampling biases 
Three sensitivity analyses were performed to examine how robust the main results of our introduction analysis 
were to known biases in sampling across space and time. For our first analysis, we randomly selected 10 of 
the bootstrap tree topologies that was inferred using Booster for discrete state ancestral state reconstruction 
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as described earlier. The average number of imports and exports between Africa and the rest of the world per 
week were then plotted overtime along with the standard error for each discrete time point.  
  
In the second, we performed a rarefaction analysis to determine how the number of introductions into Africa 
varies depending on the extent of sampling in African (internal) and non-African (external) countries. 
Rarefaction was performed by starting with the full set of samples and subsampling a random subset of 
samples from the full set at sampling fractions varying from 0.1 to 1.0. Subsampling was performed 10 times 
at each sampling fraction to create replicate datasets, which were used to place confidence internals on the 
number of introductions identified at each subsampling fraction.    
  
Because it would have been too computationally intensive to reconstruct phylogenies de novo from each 
subsampled dataset, we adopted a subsample-then-prune approach(34). For each subsampled dataset, samples 
not included in the subsampled set were pruned from the full ML phylogeny using the extract_tree_with_taxa 
function in DendroPy version 4.5.1(35). Ancestral locations were then reconstructed for internal nodes in each 
subsampled or pruned tree using maximum parsimony(36). The total number of introductions into Africa was 
then computed based on the number of branches in the tree in which the parent node was reconstructed to be 
external and the child node was reconstructed to be in Africa. 
  
The second analysis was performed to determine how sensitive the temporal distribution of introduction 
events was to uneven sampling through time. Perhaps most importantly, we sought to determine if the 
increasing proportion of introductions estimated to be from other African countries through time was an 
artefact of increased sampling effort during late 2020 and early 2021. To obtain a more uniform temporal 
distribution of sampling times, we capped the number of samples from Africa each month at a maximum 
threshold (n=400) and then randomly down-sampled to this threshold count in months that exceeded the 
threshold. As in the rarefaction analysis, samples excluded after subsampling were pruned from the ML tree 
after which ancestral states were reconstructed by maximum parsimony. 
  
Epidemiological modelling 
Data on regional trade of all imported and exported goods between South Africa and other Eastern and 
Southern African countries during 2020 was extracted from the United Nations Comtrade Database(37), 
which records trade statistics for more than 5,000 commodity groups by the Harmonized System. Data for 
cumulative COVID-19 cases and related deaths, vaccinated people, and cumulative numbers of COVID-19 
tests performed by March 30, 2021 were obtained from the Johns Hopkins University database(38). Country 
level maps of each variable were created using ArcGIS® by ESRI version 10.5 (http://www.esri.com). 
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Supplementary Figures & Tables 

 
 
Supplementary Figure S1: Sensitivity of the viral introduction analysis to geographic sampling 
biases. (A) A rarefaction analysis showing how the number of imports into Africa depends on the 
extent of sampling in Africa (blue) and the extent of external sampling in the rest of the world 
(orange). At each sampling fraction, a random set of samples was subsampled from the full 
dataset 10 times to create bootstrap replicates from which confidence intervals (shaded 
intervals) on the number of imports were computed. (B-C) Sensitivity analysis showing how the 
proportion of imports into African countries from external locations outside of Africa varied 
depending on the temporal distribution of samples in Africa. This analysis was performed twice 
with either non-uniform sampling through time using the same dataset as in Figure 2B-C of the 
main text (B) or uniform sampling through time in which we capped the number of samples from 
Africa at a maximum threshold of 400 each month. 
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Supplementary Figure S2: Number of importation and exportation events for various 
subregions on the African continent. African subregions are defined based on the African Union 
classification scheme. 
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Supplementary Figure S3: Numbers of importation and exportation events between Africa and 
the rest of the world over the first year of the SARS-CoV-2 pandemic. 

 

Supplementary Figure S4: Total monthly international trade values in US million dollars in 2020 
for A) exported goods from South Africa; and B) imported goods to South Africa with the following 
neighbouring countries: Botswana, Democratic Republic of the Congo, Eswatini, Lesotho, 
Malawi, Mozambique, Namibia, Zambia, and Zimbabwe. Source: UN Comtrade Database. 
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Supplementary Figure S5: PANGO lineages through time for a select number of African 
countries. 

 
 
 

Supplementary Figure S6: Maximum clade credibility phylogeographic trees including all 
global VOC or VOI samples. Branch colours represent most probable inferred locations of 
ancestral viruses. Numbers at internal nodes represent clade posterior probabilities. 
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Supplementary Figure S7: Time scaled phylogeny of the B.1.1.7 lineage. This phylogenetic 
cluster was extracted from the large dated phylogeny in Figure 2A. African sequences are 
highlighted by large circles, while non-African sequences appear as smaller dots. The branches 
are scaled in calendar time. 

9



 

 
 

Supplementary Figure S8: Epidemiological metricises of COVID-19 on the African continent. 
Clockwise from top left: reported COVID-19 cases per million individuals; reported COVID-19 
attributed mortalities per million individuals; numbers of COVID-19 tests performed per 1,000 
individuals; and numbers vaccinated per 100 individuals. 
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Supplementary Figure S9: Epidemiological heatmaps of cases and deaths for various 
subregions on the African continent. African subregions are defined based on the African Union 
classification scheme. 
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Supplementary Figure S10: Graph of days from sampling to submission in various African 
countries. 
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Supplementary Table S1. Status and restrictions of land border posts in South Africa as of Feb 
19, 2021. 

Country route Number of land 
border posts 

Restrictions 

Closed 
(n/N) 

Open 
(n/N) 

South Africa - 
Botswana 

13/17 4/17 · All passengers passing through the border posts are required to 
present a medical certificate with a negative COVID-19 test result 
issued within 72 hours or get tested upon arrival and subject to 
quarantine in a government holding facility. The entry to Zimbabwe 
requires a negative COVID-19 test result that is within 48 hours. 
· Rail, ocean, air and road transport is permitted for the movement 
of cargo to and from other countries, subject to national legislation 
and any directions. 
· All borders were closed on Jan 11, 2021 then reopened on 
February 15, 2021. 

South Africa - 
eSwatini 

6/11 5/11 

South Africa - 
Lesotho 

7/13 6/13 

South Africa - 
Mozambique 

2/4 2/4 

South Africa - 
Namibia 

4/6 2/6 

South Africa - 
Zimbabwe 

0/1 1/1 

13



Supplementary Table S2: Variants of Concern/Note (VoC/Ns) in Africa. 
Variant 
Name 

Lineage Date Range Spike Mutations of 
Biological 
Significance (all 
mutations) 

Impact Countries 

N501Y.V2 B.1.351 Oct. 2020 – 
Feb. 2021 

K417N, E484K, 
N501Y 

Transmissibility, 
Escape 

Neutralization, 
ACE binding 

Affinity 

South Africa, DRC, 
Mayotte, La Reunion, 

Zambia, Botswana, Congo, 
Kenya, Rwanda, 

A.23, 
A.23.1 

A.23.1 Dec. 2020 – 
Feb 2021 

V367F, Q613H Infectivity Uganda, Rwanda, Ghana, 
South Africa, Zambia, 

Botswana 
C.1.1 C.1.  S477N  Mozambique, 
B.1.525 B.1.525 Dec. 2020 - 

Feb 2021 
E484K, Q677H, 

F888L 
Escape 

Neutralization, 
ACE binding 

Affinity 

Nigeria, Ghana, Mayotte, 
Côte d’Ivoire/Bouaké 

Algeria 

A.27/N501 
Y.V4 

A.27 Jan 2021 - 
Feb 2021 

L18F, L452R, 
N501Y, A653V, 
H655Y, Q677H, 
D796Y, G1219V 

under 
investigation (VUI 

not VOC) 

Mayotte, Europe, Ghana, 
Côte d’Ivoire/Bouaké 

N501Y.V3     Brazil 
B.1.160 B.1.160  D614G, S477N confirmed 

reinfection 
(under 

investigation) 

Tunisia (reinfection), Large 
European lineage 

Ghana 

N501Y B.1.1.7 Jan - 
Mash2021 

D614G, N501Y, 
del69-70, 

Transmissibility Ghana, Morocco 
Algeria, Côte 

d’Ivoire/Bouaké, DRC 
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Supplementary Table S3: Sampling or surveillance strategies in various participating 
institutions. 

Country Proportio 
n of cases 
sequenced 

Sampling strategies Other 
(details) 

Regular 
surveillanc 
e (random 
sampling) 

Cluster/outbrea 
k investigations 

Surveillanc 
e of 

imported 
cases 

(linked to 
border 
testing) 

Investigatio 
n of re- 

infections 

South 0.20% Yes Yes No Yes Sequencing 
Africa      of infections 

      in vaccine 
      trials 
      Sequencing 
      for health 
      facility- 
      based and 
      community- 
      based 
      research 
      projects 

Zambia 0.27% Yes Yes Yes Yes Not all 
 (0.42%)     investigation 
      s are being 
      performed at 
      all times. 
      When cases 
      exceed a 
      particular 
      threshold 
      cluster, 
      random and 
      imported 
      case 
      surveillance 
      reduces or 
      stops. Total 
      cases 8/2/21 
      = 63.573, 
      8/3/21 = 
      82,421. 
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Democrati 1.4 % Yes No Yes No Regular 
c Republic (2.87%)     surveillance 
of Congo      is based on 
(DRC)      samples 

      availability; 
      the 
      surveillance 
      of imported 
      cases is 
      based on 
      samples of 
      travellers 
      coming in 
      DRC. there 
      are also 
      "sequencing 
      based on a 
      research 
      project 
      focused on 
      respiratory 
      infections 
      (Andemia) 

South  Yes No No No All samples 
Africa     with Cts 
(FS)     lower that 30 

     are stored 
     (with storage 
     record). 
     From 5 
     districts 
     samples are 
     selected 
     randomly on 
     a week basis 
     (10 - 30) per 
     district. 
     From the 
     ~15 000 
     stored 
     samples no 
     repeat testing 
     has been 
     identified 
     within less 
     than 90 days. 

Ghana 0.36% Yes Yes No No Random 
(Uhas) (0.12%)     surveillance 

      based on 
      clusters of 
      cases. 
      During 
      periods of 
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      suspected 
widespread 
infections, 
cases are 
randomly 
selected and 
sequenced. 

Tunisia 0.04% Yes No No Yes Random 
surveillance. 
Cases are 
randomly 
selected and 
sequenced. 
Some 
suspected 
reinfection 
cases are 
now tested in 
Sfax 
(Tunisia). 

Morocco  Yes Yes Yes Yes Sequencing 
of 10% of 
Sample that 
are positif 
for S drop 
real time 
PCR test 
using 
(taqPath kit 
from thermo) 
. Sanger 
Sequencing 
of the entire 
S gene for 
the 
confirmation 
of mutation 
related to 
new 
varriants. 
WGS for the 
genomic 
surveillance 
over time et 
geographical 
localtion. 

Equatorial 
Guinea 

3.10% Yes YES Yes No During the 
first wave 
from March 
to August, all 
positive 
samples were 
stored and a 
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      random 
selection of 
these 
samples were 
sequenced. 

Côte 
d'Ivoire 
(Bouaké) 

24.30% Yes No No No Data set 
includes all 
CoV-2 RT- 
PCR samples 
tested 
positive from 
surveillance 
in regions of 
Côte d'Ivoire 
other than 
Abidjan; 
testing at 
CHU 
Bouaké; 
sampling 
period May- 
November 
2020. 
Currently 
generating 
sequences 
from samples 
collected 
between Dec 
2020 and 
March 2021. 
Calculation 
of cases 
(collumn C): 
suspected 
cases: 1199; 
of those 
tested: 
100%; of 
those tested 
positive: 268 
(22.36%); of 
those 
sequenced: 
65 
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Algeria 0,08% Yes Yes Yes No Sequencing 
of Sample 
that are 
negatif for S 
by rRTPCR 
test using 
(taqPath kit 
from thermo) 
. 
Sanger 
Sequencing 
of the entire 
S gene for 
the 
confirmation 
of mutation 
related to 
new 
varriants. 
WGS for the 
genomic 
surveillance 
using 
MinION 
nanopore is 
in progress. 

Mayotte  Yes Yes No No Random 
surveillance, 
with extra 
samples 
collections in 
case of 

 
 
 
Supplementary Table S4: GISAID Acknowledgements Table supplied as an Excel attachment 
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