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Abstract
1.	 Malaria, dengue, Zika and other mosquito‐borne diseases continue to pose a 
major global health burden through much of the world, despite the widespread 
distribution of insecticide‐based tools and antimalarial drugs. The advent of 
CRISPR/Cas9‐based gene editing and its demonstrated ability to streamline the 
development of gene drive systems has reignited interest in the application of 
this technology to the control of mosquitoes and the diseases they transmit. The 
versatility of this technology has enabled a wide range of gene drive architectures 
to be realized, creating a need for their population‐level and spatial dynamics to 
be explored.

2.	 We present MGDrivE (Mosquito Gene Drive Explorer): a simulation framework 
designed to investigate the population dynamics of a variety of gene drive archi-
tectures and their spread through spatially explicit mosquito populations. A key 
strength of the MGDrivE framework is its modularity: (a) a genetic inheritance 
module accommodates the dynamics of gene drive systems displaying user‐de-
fined inheritance patterns, (b) a population dynamic module accommodates the 
life history of a variety of mosquito disease vectors and insect agricultural pests, 
and (c) a landscape module generates the metapopulation model by which insect 
populations are connected via migration over space.

3.	 Example MGDrivE simulations are presented to demonstrate the application of 
the framework to CRISPR/Cas9‐based homing gene drive for: (a) driving a disease‐
refractory gene into a population (i.e. population replacement), and (b) disrupting a 
gene required for female fertility (i.e. population suppression), incorporating hom-
ing‐resistant alleles in both cases. Further documentation and use examples are 
provided at the project's Github repository.

4.	 MGDrivE is an open‐source r package freely available on CRAN. We intend the 
package to provide a flexible tool capable of modelling novel inheritance‐modify-
ing constructs as they are proposed and become available. The field of gene drive 
is moving very quickly, and we welcome suggestions for future development.
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1  | INTRODUC TION

The advent of CRISPR/Cas9‐based gene editing technology and its 
application to the engineering of gene drive systems has led to re-
newed excitement in the use of genetics‐based strategies to control 
mosquito vectors of human diseases and insect agricultural pests 
(Champer, Buchman, & Akbari, 2016; Esvelt, Smidler, Catteruccia, 
& Church, 2014). Applications to control mosquito‐borne diseases 
have gained the most attention due to the major global health 
burden they pose through much of the world and the difficulty of 
controlling them using currently available tools (Walker, Griffin, 
Ferguson, & Ghani, 2016).

The ease of gene editing afforded by CRISPR has also led to signif-
icant versatility in terms of the gene drive systems that are now real-
izable (Champer et al., 2016; Marshall & Akbari, 2018). These include: 
(a) homing‐based systems that cleave a specific target site lacking the 
drive system and are then copied to this site by serving as a template 
for homology‐directed repair (HDR) (Burt, 2003; Windbichler et al., 
2011), (b) remediation systems that could be used to remove effector 
genes and possibly drive systems from the environment in the event 
of unwanted consequences (Gantz & Bier, 2014; Marshall & Akbari, 
2018), and (c) threshold‐dependent systems that may permit con-
fineable and reversible releases (Akbari et al., 2013; Buchman, Ivy, 
Marshall, Akbari, & Hay, 2018; Marshall & Hay, 2012).

Understanding how these systems are expected to behave in real 
ecosystems requires a flexible modelling framework that can accom-
modate a range of inheritance patterns, species‐specific details, and 
landscape details where a construct may be released. To this end, 
we present MGDrivE (Mosquito Gene Drive Explorer): a flexible sim-
ulation framework designed to investigate the population dynamics 

of a variety of gene drive systems and their spread through spatially 
explicit populations of mosquitoes and other insects.

MGDrivE is unique in its ability to simulate diverse, user‐specified 
inheritance‐modifying systems within a single, computationally effi-
cient framework incorporating insect life history and landscape ecol-
ogy. Other existing frameworks were designed for general purpose 
simulations and applied to gene drive studies (Table 1).For example, 
Eckhoff (2011) used the EMOD malaria model to simulate the spread 
of homing‐based gene drive systems through spatial populations of 
Anopheles gambiae. EMOD is open source and a powerful modelling 
framework; but significant effort is required to redefine genetic con-
trol strategies, life‐history parameters and landscape details. Magori 
et al. (2009) created Skeeter Buster by extending the CIMSiM model 
(Focks, Daniels, Haile, & Keesling, 1995) to incorporate genetic in-
heritance and spatial structure. Skeeter Buster captures most per-
tinent mosquito ecology considerations, but is not open source and 
can only simulate a handful of genetic control strategies (Legros et 
al., 2012). The SLiM genetic simulation framework (Haller & Messer, 
2017) is capable of modelling the spread of user‐defined gene drive 
systems in a metapopulation; however, it does not currently accom-
modate life‐history ecology and overlapping generations.

In this paper, we describe the key components of the MGDrivE 
framework – genetic inheritance, mosquito life history and land-
scape. We then demonstrate the application of the framework to 
CRISPR‐based homing gene drive systems for: (a) driving a disease‐
refractory gene into a population (i.e. population replacement), and 
(b) disrupting a gene required for female fertility (i.e. population sup-
pression), incorporating homing‐resistant alleles. We conclude with 
a discussion of future applications of genetic simulation packages in 
the field of gene drive modelling.

K E Y W O R D S

Aedes aegypti, Anopheles gambiae, inheritance pattern, landscape, life history, mathematical 
model, population dynamics, r package

TA B L E  1  Comparison of spatially explicit gene drive models

  Inheritance patterns Life‐history ecology Spatial and landscape details Software

MGDrivE Very flexible, can be 
user‐specified

Egg‐larva‐pupa‐adult, density‐
dependence at larval stage, not 
responsive to environmental 
variables at present

Populations distributed 
in space, connected by 
migration

r package, open source

EMOD 
(Eckhoff, 
2011)

Homing‐based gene drive, 
could be extended with 
effort

Egg‐larva‐pupa‐adult, density‐
dependence at larval stage, 
responsive to environmental 
variables

Populations arranged on 
a grid, each represent-
ing 1 km2, connected by 
migration

Java Script Open 
Notation (JSON) feeds 
into executable file, 
open source

Skeeter Buster 
(Legros et al., 
2012)

Homing‐based gene drive, 
release of insects carrying 
a conditional lethal, etc., 
cannot be user‐specified

Egg‐larva‐pupa‐adult, density‐
dependence at larval stage, 
responsive to environmental 
variables

Households and containers 
modeled explicitly, con-
nected by migration

Executable file, not open 
source

SLiM (Haller & 
Messer, 2017)

Very flexible, can be 
user‐specified

Discrete generations, no life 
history at present

Can model either connected 
populations or cells on a grid

Scripting environment 
with graphical user 
interface, open source
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2  | DESIGN AND IMPLEMENTATION

The MGDrivE framework is a genetic and spatial extension of the 
lumped age‐class model of mosquito ecology (Hancock & Godfray, 
2007) modified and applied by Deredec, Godfray, and Burt (2011) to 
the spread of homing gene drive systems, and by Marshall, Buchman, 
Sánchez C., and Akbari (2017) to population‐suppressing homing 
systems in the presence of resistant alleles. The framework incor-
porates the egg, larval, pupal and adult life stages, with egg geno-
types determined by maternal and paternal genotypes and the allelic 
inheritance pattern. In MGDrivE, by treating the lumped age‐class 
model equations in a variable‐dimension tensor algebraic form, the 
population dynamic equations can be left unchanged while modify-
ing the dimensionality of the tensor describing inheritance patterns, 
as required by the number of genotypes associated with the drive 
system. Spatial dynamics are simulated by a metapopulation struc-
ture in which migrants are exchanged between populations with 
defined probabilities. Full details of this framework are provided in 
Data S1.

The core framework is developed in r (https​://www.r-proje​
ct.org/) with certain routines in Rcpp for computational speed. By 
combining the tensor modelling framework with object‐oriented 
programming, the genetic, life history and spatial components 
of the model are able to be separated into ‘modules’ to facilitate 
ease of modification. We now describe the three modules in more 
detail.

2.1 | Modules

2.1.1 | Genetic inheritance

The fundamental module for gene drive dynamics is that describing 
genetic inheritance. In MGDrivE, this is embodied by a three‐dimen-
sional tensor contained in a drive‐specific R file and referred to as 
an ‘inheritance cube’ (Figure 1). The first and second dimensions of 
the inheritance cube refer to the maternal and paternal genotypes, 
respectively, and the third refers to the offspring genotype. Cube 
entries for each combination of parental genotypes represent the 
proportion of offspring that are expected to have each genotype, 
and should sum to one, as fitness and viability are accommodated 
separately.

The R function that builds the inheritance cube may receive a 
number of user‐defined input parameters. For example, for a homing‐
based drive system, the list of input parameters should include the 
homing efficiency, the rate of in‐frame resistant allele generation, and 
the rate of out‐of‐frame or otherwise costly resistant allele genera-
tion (Marshall et al., 2017; Unckless, Clark, & Messer, 2017). In‐frame 
resistant alleles are those for which the coding frame of the target 
site is not altered, leading to minimal fitness effects, while out‐of‐
frame resistant alleles disrupt the coding frame, leading to significant 
fitness effects. Input parameters also include those associated with 
organisms having each genotype – for example, genotype‐specific: 
(a) fertility rates, (b) male mating fitness, (c) sex bias at emergence, (d) 

F I G U R E  1   Inheritance module. Genetic inheritance is embodied by a three‐dimensional tensor referred to as an inheritance cube (left), 
here depicted for a CRISPR‐based homing construct. Maternal and paternal genotypes are depicted on the x and y‐axes and offspring 
genotypes on the z‐axis, with slices of the cube pertaining to each offspring genotype shown to the right. The inheritance pattern shown 
deviates from standard Mendelian inheritance such that, in the germline of Hh parents, the majority of wild‐type (h) alleles are converted 
into homing (H) alleles, while a small proportion are converted into in‐frame resistant (R) and out‐of‐frame resistant alleles (B). For the 
example pictured, the frequency of accurate homing given cleavage in Hh heterozygotes is 98%, with the remaining 2% of wild‐type alleles 
being converted to either in‐frame (1%), or out‐of‐frame (1%) resistant alleles

https://www.r-project.org/
https://www.r-project.org/
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adult survival rates, and (e) female and male pupatory success. These 
parameters feed into the mosquito life‐history module, which will be 
described next. Finally, a ‘viability mask’ is applied to the offspring 
genotypes to remove unviable genotypes from the population.

At the time of publication, the MGDrivE package includes in-
heritance cubes for: (a) standard Mendelian inheritance, (b) hom-
ing‐based drive intended for population replacement or suppression 
(Gantz et al., 2015; Hammond et al., 2016; Marshall et al., 2017), (c) 
Medea (a maternal toxin linked to a zygotic antidote) (Chen et al., 
2007), (d) other toxin‐antidote‐based underdominant systems such 
as UDMEL (Akbari et al., 2013; Marshall, Pittman, Buchman, & Hay, 
2011), (e) reciprocal chromosomal translocations (Buchman et al., 
2018), (f) Wolbachia (Hancock, Sinkins, & Godfray, 2011), and (g) 
the RIDL and pgSIT systems (Kandul et al., 2019; Wise de Valdez 
et al., 2011) (release of insects carrying a dominant lethal gene, and 
precision‐guided sterile insect technique). Details of each of these 
systems are provided in the online documentation at https​://marsh​
alllab.github.io/MGDri​vE/docs/refer​ence/.

2.1.2 | Mosquito life history

The mosquito life‐history module follows from the lumped age‐class 
model of Hancock and Godfray (2007) adapted by Deredec et al. 
(2011). In this model (depicted in Figure 2), the insect life cycle is di-
vided into four stages – egg (E), larva (L), pupa (P) and adult (F for fe-
male and M for male). In MGDrivE, each life stage is associated with 
a genotype. Adult females mate once and produce batches of eggs 
from the sperm of the same male, so they obtain a composite geno-
type upon mating (their own and that of the male they mate with). 
Egg genotypes are then determined by the parental genotypes and 

inheritance pattern as provided in the inheritance cube. The adult 
equilibrium population size, N, in a given habitat patch is used to 
determine the carrying capacity of that patch for larvae, K, which 
determines the degree of additional density‐dependent mortality at 
the larval stage in that patch. Following Deredec et al. (2011), this 
is described by an equation of the form: f(L)=�∕(�+L)1∕TL, where L 
is the number of larvae in the patch, TL is the duration of the larval 
stage, and α is a parameter describing the strength of density de-
pendence. Further details on the mathematical formulation of the 
lumped‐age class model and its generalization to an arbitrary num-
ber of genotypes using tensor algebra are provided in Data S1.

The MGDrivE framework currently applies to any species hav-
ing an egg‐larva‐pupa‐adult life history and for which density‐de-
pendent regulation occurs at the larval stage. Switching between 
species can be achieved by altering parameter values within this 
module: (a) the number of eggs produced per adult female per day, 
(b) the durations of the egg, larval and pupal juvenile life stages, 
(c) the daily mortality risk for the adult life stage, and (d) the daily 
population growth rate (in the absence of density‐dependent 
mortality). The daily density‐independent mortality risks for the 
juvenile stages are assumed to be identical and are chosen for 
consistency with the daily population growth rate. Default life‐
history parameter values are shown in Table 2 for three species of 
interest: (a) A. gambiae, the main African malaria vector, (b) Aedes 
aegypti, the main vector of dengue and Zika virus, and (c) Ceratitis 
capitata, a worldwide agricultural crop pest. In some cases, life‐
history parameters are modified in genotype‐specific ways by the 
gene drive construct. A current limitation of the framework is that 
equilibrium population size remains constant over time. This will 
be addressed in the next released version of MGDrivE.

F I G U R E  2  Mosquito lifehistory module. Life history is modelled according to an egg (E)‐larva (L)‐pupa (P)‐adult (F for female, M for male) 
life cycle in which density dependence occurs at the larval stage and autonomous mobility occurs at the adult stage. Genotypes are tracked 
across all life stages, represented by the subscript i∈{1, ..., g}. For example, Mi represents the number of adult males having the ith genotype. 
Females are modelled as mating once upon emergence and obtain a composite genotype – their own and that of the male they mate with. 
Egg genotypes are determined by the adult female's composite genotype and the inheritance pattern, which is specific to the gene drive 
system under consideration

https://marshalllab.github.io/MGDrivE/docs/reference/
https://marshalllab.github.io/MGDrivE/docs/reference/


     |  5Methods in Ecology and Evolu
onSÁNCHEZ et al.

2.1.3 | Landscape

The landscape module describes the distribution of mosquito pop-
ulations in space, with movement through the resulting network 
determined by a dispersal kernel. Discrete populations in the re-
sulting metapopulation are randomly mixing populations for which 
the equations of the lumped age‐class model apply. The resolution 
of the individual populations (in terms of size) should be chosen 
according to the dispersal properties of the insect species of in-
terest and the research question being investigated. A. aegypti 
mosquitoes, for instance, are thought to be relatively local dis-
persers, often remaining in the same household for the duration 
of their lifespan (Schmidt, Filipović, Hoffmann, & Rašić, 2018). For 
modelling the fine‐scale spread of gene drive systems in this spe-
cies, populations on the scale of households may be appropriate. 
A. gambiae mosquitoes, on the other hand, are thought to display 
moderate dispersal on the village scale and infrequent inter‐village 
movement (Taylor et al., 2001). This would suggest villages as an 
appropriate population unit; however other levels of aggregation 
are also possible, in both cases, depending on the resolution re-
quired and computational power available.

Daily per‐capita movement probabilities between populations 
(nodes in the network) for these examples were calculated from a 
zero‐inflated exponential kernel, accounting for pairwise distances 
between nodes. This kernel models movement as a two‐stage pro-
cess, whereby a mosquito first decides whether to leave the cur-
rent population (governed by a parameter, p0, representing the daily 
probability that it remains in the same population), and in the event 
of movement, selects the destination node from the full set with 
probabilities based on distance according to an exponential distribu-
tion (governed by a parameter, λ, where 1/λ is approximately equal 
to the mean dispersal distance in a large landscape). As the simu-
lation only requires a matrix of inter‐node movement probabilities, 
arbitrarily complex kernels that account for barriers, such as roads 
(Schmidt et al., 2018), may be used without altering the model archi-
tecture. The matrix of movement probabilities is incorporated in the 
tensor algebraic model formulation described in Data S1.

Finally, any type of release can be simulated by increasing the 
number of insects having a given sex and genotype at a specific 
population and time. As demonstrated in the following use exam-
ples, releases are parameterized according to: (a) number of released 
individuals, (b) number of releases, (c) time of first release, (d) time 
between releases, (e) population of release, and (f) sex and genotype 
of released insects.

2.2 | Deterministic versus stochastic simulations

Simulations can be run either in deterministic or stochastic form. 
Deterministic simulations are faster and less computationally inten-
sive; however, stochastic simulations capture the probabilistic nature 
of chance events that occur at low population sizes and genotype 
frequencies. In the stochastic implementation of MGDrivE, daily 
egg production follows a Poisson distribution, offspring genotype 
follows a multinomial distribution informed by parental genotypes 
and the inheritance cube, mate choice follows a multinomial distri-
bution determined by adult genotype frequencies, and survival and 
death events follow binomial distributions at the population level. 
When interpreting stochastic models, many simulations should be 
run to understand the range of outputs possible for a given model 
realization.

3  | RESULTS

To demonstrate how the MGDrivE framework can be used to 
initialize and run a simulation of a gene drive system through a 
metapopulation, we have provided vignettes with the package, 
available via instillation from CRAN at https​://CRAN.R-proje​
ct.org/packa​ge=MGDrivE, and additional examples and informa-
tion on Github at https​://github.com/Marsh​allLa​b/MGDrivE and 
the package website, https​://marsh​alllab.github.io/MGDri​vE/. The 
vignettes provide examples of simple simulations and landscape 
setup. They begin with a deterministic example of Mendelian in-
heritance, and explore expected genotype frequencies according 

TA B L E  2  Life‐history module parameter values for three species of interest (at a temperature of 25°)

Parameter Symbol Aedes aegypti Anopheles gambiae Ceratitis capitata

Egg production per 
female (day−1)

β 20 (Otero, Solari, & Schweigmann, 
2006)

32 (Depinay et al., 
2004)

20 (Diamantidis, Carey, Nakas, & 
Papadopoulos, 2011)

Duration of egg stage 
(days)

TE 5 (Christophers, 1960) 1 (Depinay et al., 
2004)

2 (Diamantidis et al., 2011)

Duration of larval stage 
(days)

TL 6 (Christophers, 1960) 13 (Depinay et al., 
2004)

6 (Diamantidis et al., 2011)

Duration of pupa stage 
(days)

TP 4 (Christophers, 1960) 1 (Depinay et al., 
2004)

10 (Diamantidis et al., 2011)

Daily population growth 
rate (day−1)

rM 1.175 (Simoy, Simoy, & Canziani, 
2015)

1.096 (Molineaux & 
Gramiccia, 1980)

1.031 (Carey, Liedo, & Vaupel, 1995)

Daily mortality risk of 
adult stage (day−1)

μF, μM 0.090 (Fay, 1964; Focks, Haile, 
Daniels, & Mount, 1993; 
Horsfall, 1955)

0.123 (Molineaux & 
Gramiccia, 1980)

0.100 (Nyamukondiwa, Weldon, Chown, le 
Roux, & Terblanche, 2013)

https://CRAN.R-project.org/package=MGDrivE
https://CRAN.R-project.org/package=MGDrivE
https://github.com/MarshallLab/MGDrivE
https://marshalllab.github.io/MGDrivE/
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to Hardy‐Weinberg equilibrium, before violating some of these 
assumptions. Next, they explore the effects of genotype‐spe-
cific fitness costs on genotype trajectories and population size. 
The impact of stochasticity on model predictions is then explored 
through stochastic simulations, with dynamics being compared to 
those expected from equivalent deterministic simulations.

Here, we describe the application of the package to two homing 
gene drive strategies: (a) driving a disease‐refractory gene into a 
population (Gantz et al., 2015), and (b) disrupting a gene required 
for female fertility and hence suppressing a population (Hammond 
et al., 2016). In both cases, we consider a population of A. aegypti 
mosquitoes having the bionomic parameters provided in Table 2 and 
distributed through the network landscape depicted in Figure 3. To 
demonstrate the functionality of the MGDrivE package, we model 
both strategies using the deterministic and stochastic implemen-
tations. In both cases, we include the generation of in‐frame and 
out‐of‐frame or otherwise costly resistant alleles (Champer et al., 
2017) and parameterize the gene drive model based on recently 
engineered constructs (Gantz et al., 2015; Hammond et al., 2016).

3.1 | Population replacement

We begin by modelling a CRISPR‐based homing construct similar to 
that engineered by Gantz et al. (2015). This was the first CRISPR‐
based homing construct demonstrated in a mosquito disease vec-
tor – namely, Anopheles stephensi, the main urban malaria vector 
in India. For this construct, homing and resistant allele generation 

were shown to occur at different rates in males and females, and 
there were large fitness reductions associated with having the hom-
ing construct. We consider a homing efficiency of 90% in males and 
50% in females – i.e. 90% of wild‐type (h) alleles are converted to 
homing (H) alleles in the germline of Hh males, and 50% of h alleles 
are converted to H alleles in the germline of Hh females. A third of 
the remaining h alleles in Hh individuals are converted to in‐frame 
resistant alleles (R), and the remainder are converted to out‐of‐frame 
or otherwise costly resistant alleles (B) due to error‐prone copying 
during the homing process (Champer et al., 2017). Female fecundity 
and male mating fitness are reduced by 25% per H or R allele and by 
50% per B allele.

The general workflow for the simulation is shown in 
Figure 4, with the full code available at https​://github.com/Marsh​
allLa​b/MGDri​vE/tree/maste​r/Examp​les/. We begin by loading the 
MGDrivE package in r and setting the working and output direc-
tories. We then choose between the deterministic and stochastic 
implementation of the model – in this case, the deterministic ver-
sion. Next, we specify the bionomic parameters of the species we 
are modelling – in this case, A. aegypti, whose default life‐history 
parameters are provided in Table 2. Following this, we define the 
landscape through which we will model the spread of the drive 
system. We begin by loading a CSV file containing the coordinates 
(longitude and latitude) of the populations in Figure 3. A function 
is then applied that computes daily movement rates between each 
of the populations based on a zero‐inflated exponential dispersal 
kernel, the parameters for which we provide. Equilibrium adult 

F I G U R E  3  Landscape module. 
Insects are distributed as populations, 
here depicted by nodes, each having 
their own coordinates and population 
size. Movement between populations is 
derived from a defined dispersal kernel, 
depicted here by edges between nodes. 
The example scenario allows both spread 
within and between communities to 
be explored. Here, nodes are coloured 
according to their community (detected 
by the DBSCAN clustering algorithm, 
Daszykowski & Walczak, 2010), with 
sizes proportional to their ‘betweenness 
centrality’ – a measure of their 
connectedness to other nodes in the 
metapopulation (Freeman, 1978)

https://github.com/MarshallLab/MGDrivE/tree/master/Examples/
https://github.com/MarshallLab/MGDrivE/tree/master/Examples/
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population sizes can be provided for each of the populations; how-
ever in this case, we assume these are identical and provide a single 
population size (Code sample 1).

With our life history and landscape modules defined, we now 
specify the gene drive system and release strategy we intend to 
model (Code sample 2). We use a pre‐specified inheritance cube, 
‘Cube_HomingDrive()’, that models the inheritance pattern of a 
homing‐based gene drive system. We specify sex‐specific hom-
ing rates, resistant allele generation rates and genotype‐specific 
fitness effects based on the construct engineered by Gantz et al. 
(2015). We then specify the release scheme by generating a list 
containing: (a) the release size, (b) number of releases, (c) time of 
first release, and (d) time between releases. This is incorporated 
into a vector also specifying the inheritance cube and the sex 
and genotype of the released insects. Finally, the populations in 

which the release takes place are specified. With the simulation 
framework now fully specified, the model is ready to run (Code 
sample 3).

F I G U R E  4  Workflow of an MGDrivE 
simulation

Code sample 1: Loading the package and setting up the life history and 
landscape modules.

Code sample 2: Setting up the inheritance/gene drive module and de-
fining the release scheme. Here, code is shown for both: A) homing‐
based replacement drive, and B) suppression drive. Only one of these 
should be selected when running the simulation.
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3.2 | Population suppression

As a second example, we demonstrate the application of the 
MGDrivE package to a population suppression homing construct 

similar to that engineered by (Hammond et al., 2016). For this con-
struct, the homing system targets a gene required for female fertil-
ity, causing females lacking the gene (those having the genotypes 
HH, HB and BB) to be infertile, and inducing a large fecundity reduc-
tion of 90% in females only having one functioning copy of the gene 
(those having the genotypes Hh, HR, hB and RB). The homing effi-
ciency is very high – 99.9% in both males and females – with a third 
of the remaining h alleles in Hh individuals being converted R alleles 
and the remainder being converted to B alleles. This is similar to the 
first CRISPR‐based homing construct demonstrated in A. gambiae, 
although with a higher homing efficiency that could be achieved 
through guide RNA multiplexing (Marshall et al., 2017). Lines of code 
that differ for this system are shown in Code sample 2. While the 
same inheritance cube applies, specific parameters differ – namely, 
homing and resistant allele generation rates, and genotype‐specific 
fitness effects.

4  | OUTPUT ANALYSIS

In the current version of MGDrivE, complete simulation results are 
output as CSV files, two basic plotting functions are provided in R, 

F I G U R E  5  Example MGDrivE simulations for CRISPR‐based homing constructs. In both cases, an Aedes aegypti population is simulated 
having the bionomic parameters in Table 2 and distributed through the landscape depicted in Figure 3. Deterministic simulations are 
denoted by solid lines in panels (a) and (b), while stochastic simulations are denoted by thin lines, each corresponding to the output of a 
single simulation, and dotted lines, corresponding to the mean of 100 stochastic simulations. (a) A population replacement homing construct 
that drives a disease‐refractory gene into the population is simulated having a homing efficiency of 90% in males and 50% in females. Wild‐
type (h) alleles that are not converted to homing (H) alleles in the germline of Hh heterozygotes are cleaved and converted to either in‐frame 
(R) or out‐of‐frame (B) resistant alleles. Female fecundity and male mating fitness are reduced by 25% per H or R allele and by 50% per B 
allele. A single release of 100 HH females at node 6 is modeled. As the homing allele (blue) is driven into the population, the wild‐type allele 
(red) is eliminated, and the in‐frame resistant allele (purple) accumulates to a population frequency of 17%. (b) A population suppression 
homing construct that interferes with a gene required for female fertility is simulated having a homing efficiency of 99.9% in both females 
and males. Wild‐type alleles that are not converted to homing alleles in the germline of Hh heterozygotes are cleaved and converted to 
either in‐frame or out‐of‐frame resistant alleles. Females without a copy of the h or R allele are infertile, while females having only one copy 
of the h or R allele have a 90% fecundity reduction. Five releases of 100 HH females at node 6 are modeled. As the homing allele (blue) is 
driven into the population, it suppresses the population due to its impact on female fertility. Eventually, an in‐frame resistant allele (purple) 
emerges and leads the population to rebound due to its selective advantage over both wild‐type and homing alleles. (c, d) Population 
frequencies of the wild‐type, homing and in‐frame resistant alleles are shown in each population over time for a deterministic model of 
the population replacement construct (panel c) and a stochastic simulation of the population suppression construct (panel d). Out‐of‐frame 
resistant alleles are omitted due to their low frequencies in both simulations. Dashed vertical lines represent the beginning and end of the 
releases

Code sample 3: Preparing output folders and running the model. It is rec-
ommended to store simulation files for each run in its own separate folder.
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and several functions are provided for aggregating the data – by 
population, genotype, or some combination thereof – as required 
by the question of interest.

In Figure 5, we display a potential visualization scheme produced 
in Mathematica for the simulations described above (additional 
videos are provided in the Supplementary Information: S1 Video 
and S2 Video). We depict allele count on the y‐axis in the Figure 5a 
and b and allele frequency (depicted as colour density) in Figure 5c 
and d, with time on the horizontal axis. For population replacement 
(Figure 5a and c), we see the gene drive allele (H) spread through 
the population, and the in‐frame resistant allele (R) accumulate to a 
small extent. This occurs because the R allele has neither a fitness 
cost nor benefit relative to the H allele once it has saturated the 
population, while the B allele is selected against due to its inherent 
selective disadvantage. Stochasticity slows these dynamics, on av-
erage, and introduces variability around the mean (Figure 5a).

For population suppression (Figure 5b and d), we see the gene 
drive system (H) spread through the population at the same time as it 
induces suppression due to its impact on female fertility. Eventually, 
we see an in‐frame resistant allele (R) emerge and spread into the 
population due to its selective advantage over both the wild‐type 
and homing alleles. In the deterministic model output, the in‐frame 
resistant allele spreads to fixation; however in the stochastic model 
output, the homing allele is often lost from the population and, as a 
result, the selective advantage of the in‐frame resistant allele is lost, 
causing it to equilibrate at a lower population frequency than in the 
deterministic simulation (in which it is never lost). Stochasticity also 
significantly slows the mean allele frequency trajectories, as well as 
introducing variability around the mean. Mathematica and Python 
files to generate Figure 5 are provided at https​://github.com/Marsh​
allLa​b/MGDri​vE/tree/maste​r/Examples.

5  | FUTURE DIREC TIONS

We are continuing development of the MGDrivE software package, 
and welcome suggestions and requests from the research commu-
nity regarding future directions. The field of gene drive has been 
moving very quickly, especially since the discovery of CRISPR‐based 
gene editing, and we intend the MGDrivE package to provide a flexi-
ble tool to model novel inheritance‐modifying constructs as they are 
proposed and become available. Future functionality will include: (a) 
‘shadow drive’, in which the Cas9 enzyme is passed on to the off-
spring even if the gene expressing it is not (Champer et al., 2017), 
(b) life‐history models incorporating a range of density‐dependence 
relationships, and encompassing a more diverse range of insect dis-
ease vectors and agricultural pests, and (c) populations that vary 
in size seasonally or in response to environmental drivers such as 
temperature and rainfall. Incorporation of environmental drivers will 
allow both seasonal trends and short‐term fluctuations to be accom-
modated within the same framework.

Additionally, we are developing a corresponding individual‐
based model that is capable of modelling multi‐locus systems for 
which the number of possible genotypes exceeds the number 

of individuals in the population. This will enable us to efficiently 
model confineable systems such as daisy‐drive involving several 
loci (Noble, Olejarz, Esvelt, Church, & Nowak, 2017), and multiplex-
ing schemes in which a single gene is targeted at multiple locations 
to reduce the rate of resistant allele formation (Prowse et al., 2017).

ACKNOWLEDG EMENTS

The authors thank Dr. Omar Akbari, Dr. Ethan Bier and Dr. Anthony 
James for discussions on gene drive architectures and molecular bio-
logical considerations, and Dr. Gregory Lanzaro, Dr. Yoosook Lee, 
Dr. Gordana Rašić and Partow Imani for discussions on mosquito 
ecology, life history and dispersal behaviour. This work was sup-
ported by a DARPA Safe Genes Program Grant (HR0011‐17‐2‐0047) 
awarded to J.M.M. and funds from the UC Irvine Malaria Initiative 
and Innovative Genomics Institute awarded to J.M.M.

AUTHORS’  CONTRIBUTIONS

H.M.S.C. and J.M.M. conceived the project. H.M.S.C. led MGDrivE 
development and S.L.W. and J.B.B. contributed substantially to core 
development. H.M.S.C. and J.M.M. wrote the first draft of the manu-
script. J.B.B. and S.L.W. wrote the vignettes. All authors revised the 
manuscript and approved for publication.

ORCID

Héctor M. Sánchez C.   https://orcid.org/0000-0001-7378-8853 

John M. Marshall   https://orcid.org/0000-0003-0603-7341 

DATA AVAIL ABILIT Y S TATEMENT

MGDrivE version 1.1.0 is available on CRAN at https​://CRAN.R-
proje​ct.org/packa​ge=MGDrivE. Additional examples and plotting 
scripts are available on Github at https​://github.com/Marsh​allLa​b/
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MGDri​vE/. The source code is available under the GPL3 License and 
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doi.org/10.5281/zenodo.3479781). Mathematical details of the model 
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To run the software, we recommend using r version 3.4.4 or higher.
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