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A new computational method illuminates the heterogeneity and evolutionary histories of cells within a tumor.
As cancer cells divide, they accrue so-

matic alterations that, in principle, offer

tantalizing opportunities to infer evolu-

tionary relationships among the geneti-

cally distinct cell populations (clones)

that comprise a tumor. In practice, how-

ever, reconstructing a phylogenetic tree

representing these ancestries is compli-

cated because samples from bulk tumors

contain a mixture of cells, where both the

number of clones and their relative pro-

portions are unknown. In this issue of

Cell Systems, El-Kebir and colleagues

(El-Kebir et al., 2016) describe an elegant

mathematical formulation for the problem

of ‘‘deconvolving’’ genome sequencing

data obtained from such a mixture

of clones, and they present a combina-

torial algorithm to reconstruct individual

tumor phylogenies from multi-region

sequencing data. This important meth-

odological advance more fully exploits

the spectrum of somatic alterations that

arise during tumor evolution toward

a better understanding of intra-tumor

heterogeneity.

An accurate and quantitative picture

of intra-tumor heterogeneity is a major

focus of current research. This genetic

heterogeneity encodes the evolutionary

history of the tumor and has impor-

tant clinical implications, as sampling

bias can obscure the interpretation of

genomic profiles, and elevated hetero-

geneity may be associated with poor

treatment response. In an effort to char-

acterize intra-tumor heterogeneity and

infer tumor ancestry, several studies

have profiled multiple regions of the

same tumor (Gerlinger et al., 2012, Sot-

toriva et al., 2013, McPherson et al.,

2016) and even single cancer glands

(Sottoriva et al., 2015), revealing impor-

tant complementary molecular informa-
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tion. Phylogenetic trees are the canoni-

cal structure for representing tumor

ancestries, where clones signify nodes.

But in such multi-region sequencing

strategies, it is essential to account for

cellular admixture and the fact that so-

matic single-nucleotide variants occur

in the presence of copy number alter-

ations; otherwise, tumor phylogenies

inferred from these data may be

inaccurate.

Early efforts more than two decades

ago used somatic microsatellite markers

as a molecular clock toward recon-

struction of tumor phylogenies (Shibata

et al., 1996), borrowing from approaches

to compare natural populations (Take-

zaki and Nei, 1996). Since then, high-

throughput genomic profiling has

enabled characterization of intra-tumor

heterogeneity at increasing resolution,

and it is now appreciated that this is

a common feature of diverse solid

tumors (Marusyk et al., 2012, Gerlinger

et al., 2012, Sottoriva et al., 2013, 2015,

McPherson et al., 2016). Numerous

computational approaches aimed at

inferring tumor phylogenies from single

or multi-region bulk sequencing data

have recently been proposed. Most of

these methods utilize the variant allele

fraction or cancer cell fraction for somatic

single-nucleotide variants restricted to

diploid regions to infer a two-state perfect

phylogeny, assuming an infinite-site

model such that each site can mutate

only once and persists. In practice,

convergent evolution could result in the

acquisition of the same mutation more

than once, thereby violating this assump-

tion. Similarly, mutations could be lost

due to loss of heterozygosity.

Indeed, both single-nucleotide variants

and copy number alterations arise during
vier Inc.
tumor evolution, and both the variant

allele fraction and cancer cell fraction

depend on the copy number state whose

inference reciprocally relies on the relative

ordering of these alterations such that

joint analysis can help resolve their ances-

tral relationship (Figure 1). To tackle this

outstanding problem, El-Kebir et al.

(2016) formulated the multi-state perfect

phylogeny mixture deconvolution prob-

lem to infer clonal genotypes, clonal frac-

tions, and phylogenies by simultaneously

modeling single-nucleotide variants and

copy number alterations from multi-re-

gion sequencing of individual tumors.

Based on this framework, they present

SPRUCE (Somatic Phylogeny Recon-

struction Using Combinatorial Enumera-

tion), an algorithm designed for this

task. This new approach uses the

concept of a ‘‘character’’ to represent

the status of a variant in the genome.

Commonly, binary characters have been

used to represent single-nucleotide vari-

ants—that is, the variant is present or

absent. In contrast, El-Kebir et al. use

multi-state characters to represent copy

number alterations, whichmay be present

in zero, one, two, or more copies in the

genome.

SPRUCE outperforms existing methods

on simulated data, yielding higher recall

rates under a variety of scenarios. More-

over, it is more robust to noise in variant

allele frequency estimates, which is a

significant feature of tumor genome

sequencing data. Importantly, El-Kebir

and colleagues demonstrate that there is

often an ensemble of phylogenetic trees

consistent with the underlying data. This

uncertainty calls for caution in deriving

definitive conclusions about the evolu-

tionary process from a single solution.

Along these lines, the two-state perfect

mailto:cncurtis@stanford.edu
http://dx.doi.org/10.1016/j.cels.2016.07.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cels.2016.07.007&domain=pdf


A B C

Figure 1. Tumor Phylogeny Reconstruction from Multi-region Bulk Sequencing Data
(A) Schematic representation of tumor evolution where cells are related by a genealogical tree and growth occurs in the presence of spatial constraints. Each
clone is defined by a distinct constellation of single-nucleotide variants (SNVs) and/or copy number alteratiosn (CNAs) and localizes to a particular region(s) of the
tumor. For illustration, three bulk samples obtained at the time of primary tumor diagnosis are shown, each consisting of one or more clone, as indicated by the
colored segments. Each SNV/CNA creates a new clone according to the infinite-allele model assumed in El-Kebir et al. (2016). Sample 1 is composed of clone d,
sample 2 by clones b and c, and sample 3 by b and e. Although the mutation defining clone a can be detected in both sample 1 and sample 2, clone a is not
detected in these two samples due to replacement by successive clones, d and c.
(B) While an equivalent phylogeny can be reconstructed as in (A), information on the topography of samples within the tumor, coupled with inference of the
mutational timeline, can reveal patterns of clone mixing and can aid delineation of the underlying growth dynamics (Sottoriva et al., 2015). For example, clonal
mixing in an early tumor (turquoise SNV clone) could give rise to patterns of genetic heterogeneity where the same somatic alteration(s) is detected in distant
regions (samples 1 and 2) of the tumor.
(C) Schematic illustration of a tumor phylogenetic tree whose leaves correspond to mixtures of cells (clones) harboring somatic alterations in varied proportions
and the edges describe their ancestral relationship. Phylogeny deconvolution aims to reconstruct the tree (including the relative timing of SNVs/CNAs) andmixing
proportions from the somatic alterations that underlie the evolutionary process givenmmixtures of the leaves of the tree. Light gray triangles and squares denote
undetectable SNVs and CNAs, respectively.

Cell Systems

Previews
phylogeny inferred from single-nucleotide

variants may represent only one possible

scenario that explains the copy number

alteration data. Importantly, the simulation

studies also formalize the intuition that in-

clusion of additional samples provides

greater benefit than sequencing a small

number of samples to greater depth, high-

lighting opportunities for improved study

design.

Thus, El-Kebir et al. provide theoretical

and conceptual advances to this chal-

lenging problem while pointing to several

opportunities for further improvement.

For example, although the infinite-allele

model is more suitable for copy number

alterations, allowing every copy number

alteration to generate a new allelic type

(i.e., copy number alterations may

change state more than once but can

change to the same state at most once),

it is likely to be violated in tumors with

defects in DNA damage repair pathways

and high genomic instability. Such

violations may occur in a significant pro-

portion of tumors in practice, hindering

accurate tree inference. As the authors

note, more generalized phylogenetic

models such as maximum parsimony

may better capture somatic evolution

but will require additional methodological
developments for the specialized case

of phylogenetic mixtures. However, in

the absence of ground-truth human

tumor phylogenies, comparison of the ac-

curacy of different models is limited to

simulation studies, and the biological

interpretation of these processes remains

challenging.

Like other methods, SPRUCE cannot

accommodate the full set of somatic var-

iants (characters) derived from whole-

genome or exome-sequencing studies,

thereby necessitating prior filtering and

clustering of single-nucleotide variants.

Although tree inference can be performed

using relatively few variants, the identifi-

cation of unique phylogenies is chal-

lenging. Moreover, since the number of

possible tree shapes grows super-expo-

nentially with the number of taxa (clones)

(St. John, 2016), interpretation of the

resultant solution space quickly becomes

intractable. This could perhaps be aided

by employing heuristics such as esti-

mating similarities among tree shapes or

statistical fit to the underlying data. As

the authors propose, a promising future

direction could leverage the combinato-

rial multi-state ancestry graph enumer-

ated by SPRUCE to generate informative

priors for use within a probabilistic frame-
work such as Markov Chain Monte

Carlo sampling, thereby drawing on

the complementary strengths of these

approaches.

These points highlight the intrinsic chal-

lenges associated with clonal deconvolu-

tion from bulk sequencing data, which is

aggravated by extensive genetic diver-

sity, sampling bias, and uncertainty in sin-

gle-nucleotide variant and copy number

alteration estimates. Indeed, the extent

of intra-tumor heterogeneity is vastly

underestimated, as has been demon-

strated in colorectal tumors, which often

exhibit Big Bang dynamics, wherein after

transformation of the founding clone, the

tumor grows in the absence of stringent

selection, compatible with effectively

neutral evolution (Sottoriva et al., 2015).

Hence, for tumors that follow a Big Bang

model, timing is the primary determinant

of mutational frequency, such that late-

arising mutations will be largely undetect-

able (Figure 1C). Theoretical approaches

also suggest that nearly every tumor cell

may be genetically distinct (Ling et al.,

2015). This abundant genetic diversity

provides an opportunity to infer tumor

ancestry but also poses challenges for

the conceptual definition of a clone if all

cells are unique.
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Single-cell sequencing mitigates many

of the above issues by enabling direct

analysis of the unit of interest but poses

additional methodological problems due

to noisy and incomplete measurements.

Currently, accurate, scalable, and com-

plete single-cell tumor genomes are

limited by practical and technical consid-

erations. Nonetheless, certain questions

may be informed by a combination of

bulk and single-cell sequencing (McPher-

son et al., 2016). Additionally, new tech-

nologies enabling simultaneous muta-

tional and transcriptional profiling of the

same cell (Macaulay et al., 2015) will

facilitate mapping of clonal tumor geno-

types to phenotypic changes. Another

paper in this issue (Li et al., 2016) de-

scribes an approach for simultaneously

calling structural variants and allele-

specific copy number alterations within

a cancer genome. Accurate identifica-

tion of somatic variants is a critical

input to methods such as those of El

Kebir et al.

It is important to appreciate that the in-

ferred tree alone does not provide a com-

plete view of a tumor’s evolutionary history

and dynamics. For instance, early clonal

mixing may contribute to spatial heteroge-

neity in certain cancers, as we have

observed in colon cancer (Sottoriva et al.,

2015) and as illustrated in Figure 1B. How-

ever, without topographical information

regarding the origin of a samplewithin a tu-

mor, the reconstructed phylogeny cannot
14 Cell Systems 3, July 27, 2016
be distinguished from that arising in the

absence of clone mixing (Figure 1A). Since

solid tumors exhibit hierarchical tissue

structure and are not well-mixed popula-

tions, such spatial organization is likely to

be generally important.

Crucially, the resultant patterns of intra-

tumor heterogeneity reflect the evolu-

tionary forces that gave rise to them and

may be exploited to infer both phylog-

enies and patient-specific tumor dy-

namics within a spatial computational

model of tumor growth, as we have previ-

ously shown (Sottoriva et al., 2015). Such

approaches can also help to illuminate the

range of evolutionary trajectories that

occur at different stages of tumor pro-

gression in distinct cancer types,

including gradual (linear) progression

versus punctuated evolution. These stra-

tegies can also be applied to delineate

outstanding questions concerning mech-

anisms of metastatic progression and

the extent of clonal dynamics under treat-

ment selective pressure. Ultimately, the

interpretation of such data within popula-

tion genetic models will provide quantita-

tive insights into human tumor evolution

toward the development of predictive

models and patient-tailored treatment

strategies.
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