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Of all known enzymes, few have been more integral in link-
ing the evolution of life with the geochemical cycles of our 
planet than Rubisco (d-ribulose 1,5-bisphosphate carbox-

ylase/oxygenase)1. Rubisco sources nearly all organic carbon to 
the biosphere through the fixation of atmospheric CO2 with ribu-
lose 1,5-bisphosphate (RuBP) into biomass, sustaining our entire 
food supply. Rubisco also possesses competing oxygenase activity, 
thought to be a vestige of its evolution in a young, oxygen-depleted 
atmosphere; yet it has co-evolved with Rubisco’s carboxylase activ-
ity over billions of years. Although there are several distinct forms 
of Rubisco found across all three domains of life2,3, most carbon 
fixation on Earth is driven specifically by form I Rubisco (found in 
plants, cyanobacteria, algae and select bacteria phyla); the evolution 
of this unique form of Rubisco has profoundly shaped the trajectory 
of our planet.

Structurally, all forms of Rubisco are composed of at least two 
large subunits (RbcL, ~50 kDa) which assemble head-to-tail as 
catalytically active dimers. From this rudimentary dimeric scaffold 
(found in form II and III homologues), Rubisco has evolved to func-
tion in higher-order structures of large subunits including hexam-
ers (form II), octamers (form I) and decamers (form III). Form I 
homologues, however, are structurally unique from their divergent 
form II and form III counterparts due to the presence of additional 
small subunits (RbcS, ~13–17 kDa), which cap either end of a cen-
tral octameric RbcL assembly to form a hexadecameric (L8S8) holo-
enzyme. Understanding the origins of RbcS is part and parcel to 
investigating the evolution of form I Rubisco.

Although not in direct participation with the active site, RbcS 
is accepted as an indispensable structural component of form I 

Rubisco4–6. For example, cyanobacterial Rubisco from Synechococcus 
sp. strain PCC 6301 (Syn6301) retains ~1% of its carboxylase activ-
ity in the absence of RbcS (ref. 4), suggesting that active-site struc-
tural integrity is compromised. Furthermore, form I Rubisco from 
Rhodobacter sphaeroides relies on RbcS to correctly arrange RbcL 
geometry for proper activity7 and plant Rubisco RbcL form insolu-
ble aggregates when expressed without RbcS in planta8,9. Despite its 
demonstrated significance in Rubisco catalysis, the structural role 
RbcS has played in the evolution of form I Rubisco has long been 
debated6. This quandary, in part, stems from the fact that we have 
not identified form I Rubisco that function without small subunits. 
Thus, the identification and characterization of a small subunit-less 
form I Rubisco would provide the necessary reference point from 
which to better examine the evolutionary role of RbcS. Towards this 
end, we searched metagenomic datasets for a ‘missing link’ between 
the evolution of the form I clade and all other forms of Rubisco. 
Here, we report the discovery of a form I Rubisco with octameric 
oligomeric assembly that evolved without RbcS, thus challenging 
our understanding of the structural properties that govern the activ-
ity of the most prominent form of Rubisco.

Discovery of form I Rubisco that lack small subunits
To determine whether form I Rubisco lacking small subunits occur 
in nature, we analysed a diverse set of metagenomic datasets derived 
from environmental communities of largely uncultivated bacteria. 
Our analyses specifically targeted the identification of uncharac-
terized bacterial rbcL genes, which are usually found within oper-
ons encoding other key Calvin–Benson–Bassham (CBB) cycle 
genes10. Through this process, we identified 24 rbcL genes with gene  
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products that share high sequence homology (52–61%) to known 
form I Rubisco. Notably, the average amino acid sequence identity 
between different forms of Rubisco is ~30%, thus it is possible that 
the identified rbcL genes were either within the form I clade, or 
within a close sister clade2. Further phylogenetic analyses confirmed 
that the newly discovered rbcL sequences indeed form a monophy-
letic clade sister to form I Rubisco. Given the unique phylogenetic 
proximity to form I, we named this new clade form I’ to distinguish 
it from all other bona fide forms of Rubisco (Fig. 1a).

Where metagenome-assembled contigs were of sufficient length 
to reveal the genomic context surrounding form I' rbcL genes, all 
identified operons encoded other CBB cycle genes, including the 
only other CBB cycle-specific gene, phosphoribulokinase (PRK) 
(Fig. 1b). Closer inspection of metagenome-assembled genomes 
(MAGs) containing form I' rbcL genes indicated the absence of rbcS 
upstream or downstream of rbcL. Notably, bacterial form I rbcL and 
rbcS genes are always found within one or two genes of another in 
operons11,12. Given that form I' Rubisco lacks RbcS similar to all 
other non-form I Rubisco found in various bacteria and archaea, 
this suggests that the form I' clade represents a distinct form of 
Rubisco that probably diverged from the form I clade before the 
origin of RbcS.

Surprisingly, all form I' genes identified from MAGs were 
found exclusively in a single order of the Chloroflexi phylum, 
Anaerolineales (Extended Data Figs. 1 and 2). Although Chloroflexi 
are commonly known for their phototrophic members in the order 
Chloroflexales, most of the phylum is composed of phenotypically 
diverse filamentous bacteria that are non-phototrophic, such as the 
Anaerolineales13. Of the known phototrophic examples of Chloroflexi 
within the order Chloroflexales, most perform carbon fixation via 
the 3-hydroxypropionate bicycle (for example, Chloroflexus sp.) or 
with form I Rubisco via the CBB cycle (for example, Oscillochloris 
trichoides, Chlorothrix halophila and Kouleothrix aurantiaca)14. 
Form I'-containing MAGs were not found to contain character-
istic 3-hydroxypropionate bicycle genes such as propionyl-CoA 
synthetase, malonyl-CoA reductase/3-hydroxypropionate dehy-
drogenase and malonyl-CoA/succinyl-CoA reductase, suggest-
ing that the bacteria consortium from which MAGs were derived  
use the CBB cycle for autotrophy. Although some examples of  
phototrophic Chloroflexi have recently been described in clades sis-
ter to the Anaerolinea (for example, the class-level clade Candidatus 
Thermofonsia)15, none possessed carbon fixation pathway genes 
and were presumed to be photoheterotrophic. Studies have demon-
strated that phototrophy within Chloroflexi may be driven by hori-
zontal gene transfer15,16; however, the tight phylogenetic distribution 
of form I' genes within the order Anaerolineales suggests otherwise, 
albeit future studies may reveal genomes outside of Anaerolineales 
that possess form I' genes.

Form I' Rubisco is functional despite lack of small subunits
To characterize genes discovered from MAGs, representative form 
I' Rubisco homologues were recombinantly expressed and puri-
fied (Extended Data Fig. 3a) from Escherichia coli overexpressing 
the bacterial chaperonin system GroEL–GroES (homologous to 
Cpn60–Cpn10/20 in plants), a necessary component of Rubisco 
biogenesis17,18. The assembly of hexadecameric form I homologues 
in cyanobacteria and plants requires auxiliary chaperones such as 
RbcX and Raf1, which aid in the stabilization of the octameric RbcL 
core before the addition of small subunits19,20. Other form I homo-
logues, however, do not require homologous assembly factors but 
instead rely on RbcS for efficient assembly, which has been dem-
onstrated for Rubisco from the photosynthetic proteobacterium  
R. sphaeroides7. RbcX was not found in form I' containing MAGs 
(Fig. 1b). Consistent with this finding, all form I' sequences do 
not possess the C-terminal binding domain for RbcX (refs. 8,21) 
(Extended Data Fig. 4a). Furthermore, form I' homologues identified  

to date do not possess small subunits, precluding the necessity of 
chaperones involved in the assembly of hexadecameric Rubisco19. 
Some archaeal Rubisco possess an extra C-terminal domain that is 
proposed to aid in RbcL core assembly22 but this unique insertion 
is not found within the described representative homologues of the 
form I' clade (Extended Data Fig. 4a). Notably, Syn6301 Rubisco 
expressed in E. coli makes up ~1–2% of the total soluble protein but 
this number improves to ~6% with the associated overexpression of 
GroEL/ES23. In comparison, Rubisco from R. sphaeroides comprises 
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Fig. 1 | Metagenomics-enabled identification of a novel clade of form I 
Rubisco that lack small subunits. a, Maximum-likelihood phylogeny of 
Rubisco RbcL. By including recently discovered metagenome-assembled 
genomes (MAGs) from Chloroflexi, the emergence of a bona fide, 
well-supported clade of Rubisco was identified (form I'). Black circles 
indicate bootstrap values of 100 and white circles indicate bootstrap 
values >90. b, Example Chloroflexi operons with form I' Rubisco (dark 
blue) reveal no presence of an rbcS, a defining feature of form I Rubisco, 
which are almost always found immediately neighbouring rbcL in bacteria; 
however, other CBB cycle-related genes are found in the operon (light 
blue). White, other enzymes; grey, hypothetical protein. Annotated loci 
(i–v) represent scaffolds 211,530, 92, 509,483, 467,972 and 172,446, 
respectively. For the full annotation information, see Supplementary Data 2. 
GAPDH, glyceraldehyde-3-phosphate dehydrogenase; cbbT, transketolase; 
PRK, phosphoribulokinase; FBP, fructose bisphosphate; TBP, tagatose 
bisphosphate; cbbF, fructose 1,6-bisphosphatase.
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~16% of the total soluble protein when heterologously expressed 
in E. coli, which jumps to 33% with the overexpression of GroEL/
ES7. With the system outlined in this work, form I' Rubisco was 
found to express at ~7–8% of the total soluble protein in BL21(DE3)  
E. coli, which improves to ~14–15% when overexpressed with 
GroEL/ES (Extended Data Fig. 3b). Currently, it is unknown 
whether the expression levels of form I' Rubisco in E. coli are intrin-
sic to its amino acid sequence alone or if auxiliary chaperone factors 
are necessary for higher expression. Although the Chloroflexi from 
which these sequences are derived may possess a unique assembly 
factor that aids in Rubisco biogenesis, no such protein was identi-
fied from the metagenomic datasets presented in this work.

To assess the catalytic activity of a representative form I' 
homologue, we performed detailed enzyme kinetic measure-
ments on form I' Rubisco from the mesophilic Chloroflexi species 
‘Candidatus Promineofilum breve’ (P. breve) using the method 
of Parry et al.24. At saturating substrate concentrations, Rubisco 
proteins show maximal rates of catalysis (VC and VO for carbox-
ylation and oxygenation, respectively), generally at the expense 
of the concentration of substrate necessary to achieve a maximal 
rate (represented by the Michaelis constants KC and KO for car-
boxylation and oxygenation, respectively, which can be considered 
conceptually as pseudo-dissociation constants for the binding of 
either CO2 or O2)25,26.

P. breve Rubisco demonstrated relatively slow VC and about 
average KC when compared to the reported measurements of form 
I enzymes at 25 °C (ref. 26) (Table 1 and Fig. 2). Conversely, the 
enzyme demonstrated slightly above-average VO and below-average 
KO. This is consistent with the discovery of the form I' clade within 
the order Anaerolineales, which is typically comprised of obligate 
anaerobes27, although genomic signatures of aerobic respiration 
have recently been discovered in some examples of Anaerolineae28,29. 
Together, these kinetic parameters culminated in a specificity for 
CO2 over O2 (represented by the specificity factor (SC/O), a measure 
of the catalytic efficiency of the carboxylation reaction over the 
oxygenation reaction) that is lower relative to values reported for 
form I enzymes but higher than form II and form III homologues 

(Supplementary Table 1). It is unclear at this time whether the high 
oxygenase specificity of P. breve Rubisco is linked to the absence of 
RbcS. Notably, form I' and form I Rubisco lineages diverged before 
the evolution of cyanobacteria suggesting that form I' enzymes may 
have evolved in anaerobic conditions.

Form I' Rubisco is octameric, reminiscent of form I Rubisco
The form I clade is structurally characterized by two features dis-
tinct from other forms of Rubisco: (1) the presence of RbcS and 
(2) the oligomeric assembly of RbcL into octamers. Given the close 
phylogenetic placement to the form I clade, we hypothesized that 
form I' homologues may possess octameric oligomeric assembly 
of RbcL, which has not been previously observed for Rubisco in 
nature. Size-exclusion chromatography (SEC) and non-denaturing 
PAGE analyses revealed that recombinant P. breve RbcL dimers 
(~100–110 kDa) oligomerized into a higher-order structure  
(Fig. 3d). Previous studies have demonstrated that the addition of 
the Rubisco-specific transition-state analogue, 2-carboxyarabinitol 
1,5-bisphosphate (2CABP), may influence the oligomeric state of 
the enzyme30. Incubation of magnesium-bound and CO2-activated 
P. breve Rubisco with 2CABP resulted in an observed structural 
compaction, evident from both later elution in SEC traces, as well as 
slower migration in non-denaturing gels (Fig. 3).

To more rigorously characterize the solution-state oligomeric 
assembly of P. breve Rubisco, we performed SEC coupled to 
small-angle X-ray scattering (SAXS) and multi-angle light-scattering 
(MALS) (SEC–SAXS–MALS) experiments31 with activated P. breve 
Rubisco in the presence or absence of 2CABP. Protein molecular 
weights determined by MALS (~400–440 kDa) supported the oligo-
merization of P. breve Rubisco as an L8 complex (theoretical octamer 
molecular weight ~409 kDa), similar to the octameric assembly of 
RbcL in related form I enzymes (Fig. 3). These observations were 
corroborated by negative-staining electron microscopy (Extended 
Data Fig. 5). Experimentally determined pair-distribution, or P(r), 
functions displayed notable broadening and elongation of P. breve 
Rubisco in the absence of 2CABP relative to the 2CABP-bound pro-
tein (Fig. 3b). This observation agrees well with the larger radius of 

Table 1 | Kinetic characterization of form I' Rubisco at 25 °C

Rubisco VC (s−1) KC (μM) SC/O VO (s−1) KO (μM)

Form I' P. breve 2.23 ± 0.04 (5) 22.2 ± 9.7 (5) 36.1 ± 0.9 (10) 1.11(5) 401 ± 115 (5)

Form I Synechococcus sp. strain PCC 6301 14.3 ± 0.71 (4) 235 ± 20.0 (4) 56.1 ± 1.3 (4) 1.10 (4) 983 ± 81 (4)

VC and VO correspond to the maximal rates of the carboxylation and oxygenation reactions, respectively, under saturating substrate concentrations. KC and KO are the Michaelis constants (Km) for the 
carboxylation and oxygenation reactions, respectively. SC/O = (VC/KC)/(VO/KO). Values are mean ± s.e.m. with n indicated in parentheses, where n reflects the number of experiments conducted with the 
same protein sample.
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gyration (Rg) values of the 2CABP-bound (Rg ≈ 46.8 ± 0.4 Å) versus 
unbound (Rg ≈ 45.0 ± 0.5 Å) protein.

In the absence of substrate, form I Rubisco proteins exist in an 
‘open’ conformation that is structurally characterized, in part, by 
an extended C-terminal domain that is disordered and positioned 
away from the active site32. Upon active-site binding of RuBP, the 
extended C-terminal domain flips down over the active site with 
loop 6 to produce a compact ‘closed’ conformation primed for catal-
ysis. To account for observed differences in the radius of gyration 
between 2CABP-bound and unbound structures, we generated the-
oretical SAXS data from computational models of octameric P. breve 
Rubisco either in a compact ‘closed’ state (bound to 2CABP) or an 
‘open’ state with disordered C-terminal domains (Fig. 3c). Indeed, 
theoretical SAXS data produced from these models matched well 
with the experimentally determined P(r) functions (Fig. 3b) and 
SAXS profiles (Extended Data Fig. 6 and Supplementary Table 2, 
χ2 = 1.8 and 1.4 for closed and open models, respectively).

Overall, the combination of SEC–SAXS–MALS and electron 
microscopy experiments support an L8 oligomerization of form I' 
Rubisco reminiscent of the L8S8 form I Rubisco. Because no other 
form of Rubisco has been convincingly demonstrated to express as 
octamers in nature (see Supplementary Note), the most parsimo-
nious history consistent with our data suggests that the common 
ancestor of form I and form I' clades evolved an octameric core 
assembly before the evolution of RbcS.

Form I' Rubisco structure yields insight into form I Rubisco 
evolution
To obtain higher molecular resolution of P. breve Rubisco, we solved 
a 2.2 Å crystal structure of the activated enzyme in complex with 
2CABP (Fig. 4 and Supplementary Table 3). Superposition of P. 
breve RbcL onto the structure of Syn6301 L8S8 Rubisco (PDB ID: 
1RBL)33 resulted in a Cα RMSD of 0.68 Å between 435 pruned 
atom pairs (97.5% of P. breve RbcL amino acid sequence), with a 
Q-score of 0.87 (ref. 34). As with all other bona fide Rubisco, all key 
active-site residues35,36 were positioned in an αβ-barrel (TIM-barrel) 
domain (residues 158–405).

Many of the characteristic form I hydrophobic RbcL residues 
at the interface of large and small subunits37 were either function-
ally substituted on the surface of P. breve Rubisco (~31%) or com-
pletely absent (~4%), based on sequence homology to Syn6301 
RbcL (Extended Data Fig. 7). RbcL surface residues between the 
two structures displayed strikingly similar electrostatic characteris-
tics (Fig. 4), which was unexpected given that P. breve Rubisco had 
not evolved to interact with RbcS, unlike its closely related Syn6301 
homologue. Because of this observation and the close phyloge-
netic relationship between the form I and form I' clades, a com-
peting hypothesis is that form I' evolved from form I homologues  
and subsequently lost RbcS, as opposed to the hypothesis that  
form I' and form I Rubisco diverged from a common ancestor. To 
explore this further, we investigated the observation that form I  
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homologues possess an RbcL ‘C-terminal extension’ (residues 
430–442 of Syn6301 Rubisco; Extended Data Fig. 4a) not found in 
Rubisco that lack RbcS (that is, all other forms of Rubisco). This 
unique C-terminal extension has evolved in form I lineages to sta-
bilize key RbcL interactions with RbcS (ref. 38) (Extended Data Fig. 
4b). The form I' enzymes identified in this study do not possess 
this unique C-terminal extension important for RbcS interactions, 
supporting the hypothesis that form I' and form I Rubisco diverged 
from a common ancestor. This is in accordance with the parsimoni-
ous observation that all non-form I Rubisco lack RbcS, suggesting 
that the common ancestor to both form I and form I' clades most 
likely lacked RbcS.

In the absence of RbcS, we hypothesized that P. breve Rubisco 
must possess fortified interactions at the RbcL dimer–dimer inter-
face to support octameric assembly. Indeed, P. breve Rubisco pos-
sesses an extensive network of hydrogen bonds and salt bridges 
at the interdimer interface that is not present in Syn6301 Rubisco  
(Fig. 5a). Site-directed mutagenesis of key amino acid residues 
within this network (Lys 150, Asp 161, Trp 165, Asp 220 and 
Tyr 224) to alanine abolished P. breve Rubisco’s octameric assem-
bly (Extended Data Fig. 8), demonstrating their importance in 

maintaining holoenzyme stability in the absence of RbcS. Notably, 
homologous amino acid positions to Asp 161, Trp 165 and Tyr 224 
within Syn6301 (Val 154, Leu 158 and Phe 217, respectively) are 
incapable of forming a similar electrostatic network due to their 
side-chain physicochemical properties, necessitating interactions 
with RbcS for complex stability (Extended Data Fig. 7).

To quantitatively evaluate how subunit interactions within 
Syn6301 and P. breve Rubisco affect the thermal stability of the 
complex quaternary structure, we used a protein thermal shift 
assay39 (Fig. 5b). In the absence of RbcS, Syn6301 Rubisco displayed 
a two-phase melting profile; the first phase (Tm = 58.6 ± 0.2 °C) 
resulting from quaternary structure disassembly (the dissociation 
of octamers into dimers) and the second phase (Tm = 70.6 ± 0.2 °C) 
corresponding to the simultaneous denaturation of RbcL dimers 
and RbcL secondary structure40. In the presence of RbcS, Syn6301 
Rubisco was strongly stabilized such that L8S8 disassembly was 
shifted by more than 15 °C relative to Syn6301 L8 (Tm = 75.5 ± 0.1 °C). 
Interestingly, P. breve Rubisco disassembly displayed a modest 
increase in Tm (82.6 ± 0.1 °C) relative to Syn6301 L8S8 but a signifi-
cant increase when compared to the Tm measured for Syn6301 in 
the absence of RbcS, consistent with the predicted added stability 
due to interdimer interface interactions. To stabilize Syn6301 in the 
absence of RbcS, we mutated RbcL residues known to interact with 
RbcS to mimic part of the electrostatic network stabilizing P. breve 
oligomeric assembly (Extended Data Fig. 9). This effort yielded 
modest improvement in stability, highlighting the complexity of 
forming octamers in the absence of RbcS.

Discussion
Accrued evidence from investigations into the evolutionary adapt-
ability of proteins supports a common trend: the catalytic promis-
cuity of an enzyme is inversely proportional to its conformational 
stability41–43. In line with previous observations6, the data presented 
in this work suggest that the innovation of a distinct structural 
subunit (RbcS) imparted structural stability to Rubisco during the 
evolution of its carboxylase and oxygenase activities towards ‘Pareto 
optimality’44. Form I' Rubisco from P. breve demonstrated high 
oxygenase activity and lower specificity when compared to form I 
homologues (Fig. 2 and Table 1), probably stemming from the anaer-
obic lifestyle of the Anaerolineales order of Chloroflexi from which 
sequences were discovered. Furthermore, the divergence of form I' 
and form I Rubisco from a common ancestor predates the origin 
of cyanobacteria; thus it is likely that form I' Rubisco originated 
during the Archaean Eon when atmospheric oxygen was scarce. 
Collectively, these observations suggest that the appearance of RbcS 
and the evolutionary transition from L8 to L8S8 may have been an 
evolutionary response to the rise of oxygen ~2.4 billion years ago. 
This environmental transition may have provided a strong selec-
tive pressure to L8-containing autotrophs (for example, stem-group 
cyanobacteria) that necessitated a tradeoff between conformational 
rigidity (enhanced interactions at the dimer–dimer interface of 
octameric Rubisco) and active-site plasticity. The selective pressure 
driving this tradeoff probably stemmed from an increased demand 
for improved carboxylation activity to drive flux through carbon 
metabolism during a rapidly changing paleoatmosphere45,46. To 
evolve this conformational dynamism while maintaining an opti-
mized oligomeric state (L8), we posit that RbcS evolved to facili-
tate the adaptive evolution of Rubisco’s catalytic activity, effectively 
buffering the cost of destabilizing mutations and allowing the sam-
pling of higher genetic diversity during the random walk through 
sequence space.

In addition to the evolutionary insight gleaned from this work, 
the discovery of the form I' clade from MAGs may offer alterna-
tive means to explore Rubisco engineering efforts in plants. Notably, 
form I Rubisco has long been recalcitrant to directed evolution 
experiments for improved carbon fixation, with notable exceptions47,  

90°

a bSyn6301 RbcLS (L8S8) P. breve RbcL (L8)

11
5 

Å

Fig. 4 | Crystal structure of form I' Rubisco compared to cyanobacterial 
form I Rubisco. a,b, Comparison of the structural models of form I Rubisco 
from Synechococcus sp. strain PCC 6301 (PDB ID: 1RBL) RbcL (green) with 
RbcS (tan) (a) and form I' Rubisco from P. breve (PDB ID: 6URA, blue) 
which lacks RbcS (b). Coulombic electrostatic potential maps of 1RBL  
(RbcS removed) and P. breve Rubisco are illustrated by the charge 
distributions (negative, red; neutral, white; positive, blue) of the surface 
residues of either structure.
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in part due to challenges associated with effectively exploring the 
sequence space of two genes (RbcL and RbcS) simultaneously; the 
absence of RbcS in form I' enzymes may streamline such future 
efforts. Overall, performing directed evolution experiments47,48 with 
P. breve Rubisco in conjunction with the continued characterization 
of the form I' clade will offer opportunities to advance our under-
standing of Rubisco evolution.

Methods
Metagenomic and phylogenetic analysis. All metagenomes were sequenced 
using 150-base pairs, paired-end Illumina reads and assembled into scaffolds 
using either IDBA-UD or Megahit. Scaffolds were binned on the basis of GC 
content, coverage, presence of ribosomal proteins, presence/copies of single 
copy genes, tetranucleotide frequency and patterns of coverage across samples. 
Bins were manually curated, dereplicated and filtered for completeness and 
contamination. Genes were predicted using hidden Markov models (HMMs) on 
the basis of Pfam, TIGRfams, KEGG and custom databases. Phylogeny of bins 
containing Rubisco genes was identified using overall scaffold gene content as well 
as maximum-likelihood phylogenetic trees of 16 concatenated ribosomal protein 
sequences. Rubisco gene sequences were dereplicated at 97% amino acid identity 
using CD-Hit, aligned using MAFFT (default parameters) and columns with >95% 
gaps were removed using TrimAI. A maximum-likelihood phylogenetic tree was 
constructed using RAxML-HPC BlackBox (v.8.2.10) as implemented on CIPRES 
Science Gateway (phylo.org; default parameters with LG model). To construct  
Fig. 1a, branches with bootstrap values of <0.65 were collapsed. Both the 
alignment file and the tree file with bootstrap values are available on figshare 
(https://doi.org/10.6084/m9.figshare.9980630).

Plasmids, cloning and site-directed mutagenesis. Representative form I' rbcL 
genes were synthesized by Twist Biosciences (sequences available as supplementary 
data) and cloned into a pET28 vector with an N-terminal His14-bdSUMO tag49. 
Plasmids pSF1389 (ref. 49), pET11a-Syn6301-rbcLS, pET11A-Syn6301-rbcL, 
pBADES/EL and pG-KJE8 (ref. 21) were gifts. Site-directed mutagenesis (SDM) 
was conducted using an Agilent QuikChange SDM kit and standard procedures. 
Primers were designed using the Agilent QuikChange Primer Design tool 
(available as Supplementary Data 3).

Expression and purification of recombinant proteins. Brachypodium distachyon 
SUMO-specific protease (bdSENP1) was prepared by transforming pSF1389 
into chemically competent BL21 DE3 Star E. coli cells (Macrolab). Cells were 
grown to mid-log phase at 37 °C (optical density, OD600 ~0.6) and induced with 
0.3 mM IPTG for 3 h. Cells were resuspended in pH 7.0 lysis buffer (20 mM 
sodium phosphate, 300 mM NaCl, 10 mM imidazole, 5% glycerol, 2 mM MgCl2) 
with ~5 mM PMSF and subject to a freeze–thaw cycle before lysis by use of a 
Microfluidizer high-pressure homogenizer (Microfluidics) and centrifugation 
(15,000 relative centrifugal force (RCF), 20 min). Soluble protein was 0.2/0.8 μm 
filtered and applied to Ni-NTA Resin (Thermo Fisher) and batch-bound according 
to the manufacturer’s protocols. Columns were washed thoroughly before elution. 
TEV protease (MilliporeSigma) was added to the eluted fraction according to the 
manufacturer’s suggestion and rocked gently overnight at 4 °C to facilitate His-tag 

cleavage. The flow-through from TEV protease reactions was buffer exchanged 
into pH 7.0 Ni equilibration buffer (20 mM sodium phosphate, 300 mM NaCl, 
10 mM imidazole, 10% glycerol) and passed over Ni-NTA resin again to separate 
cleaved His-tag from the target protein. bdSENP1-containing flow-through was 
analysed by SDS–PAGE for purity and stored at −80 °C in storage buffer (20 mM 
sodium phosphate pH 7.0, 300 mM NaCl, 1 mM DTT, 10% glycerol).

P. breve Rubisco was prepared by cotransforming plasmids containing 
His14-bdSUMO-tagged P. breve RbcL into chemically competent BL21 DE3 Star 
E. coli with pBADES/EL plasmid. Cells were grown to mid-log phase at 30 °C 
(OD600 ≈ 0.6) and overexpression of GroEL/ES was induced by the addition of 0.2% 
w/v arabinose and further incubation for 2 h. Cells were resuspended in fresh LB 
media (without arabinose) with 300 mM NaCl and 20 mM l-proline and shaken 
for 16 h at 16 °C. Pelleted cells were resuspended in pH 8.0 lysis buffer (20 mM 
sodium phosphate, 300 mM NaCl, 10 mM imidazole, 5% glycerol, 2 mM MgCl2) 
with ~5 mM PMSF and subject to a freeze–thaw cycle at −80 °C before lysis by 
use of a Microfluidizer high-pressure homogenizer. The soluble fraction was 
collected by centrifugation (15,000 RCF, 20 min) and 0.2/0.8 μm filtered. Clarified 
cell lysate was batch-bound to pre-equilibrated Ni-NTA resin as described above. 
Columns were washed thoroughly before resuspension in bdSENP1 reaction buffer 
(20 mM sodium phosphate pH 8.0, 300 mM NaCl, 1 mM DTT, 10% glycerol). 
Purified bdSENP1 was added to resuspended columns and rocked gently overnight 
at 4 °C to facilitate cleavage of the His14-bdSUMO tag from the target protein. 
Flow-through from the bdSENP1 reaction was applied to a 5 ml HiTrap Q FF 
column equilibrated in Q Buffer A (100 mM HEPES pH 8.0). Protein was eluted off 
the column over a linear NaCl gradient from 5 mM to 1 M. Eluted fractions were 
analysed by SDS–PAGE before concentration and separation by size-exclusion 
chromatography using a Superose 6 Increase 10/300 GL column (GE Healthcare 
Life Sciences) equilibrated in SEC buffer (50 mM sodium phosphate pH 8.0, 
300 mM NaCl, 25 mM MgCl2, 1 mM DTT, 5 mM NaHCO3). Eluted SEC fractions 
were analysed by SDS–PAGE and native PAGE for Rubisco content and purity. 
Samples were stored in 20 mM sodium phosphate pH 8.0, 150 mM NaCl, 10 mM 
MgCl2, 10 mM NaHCO3 at −80 °C.

The Syn6301 RbcLS was prepared in a similar fashion to previous reports21,40. 
Plasmids Syn6301-rbcLS-pET11A and pBADES/EL were cotransformed into BL21 
DE3 Star E. coli cells. Cells were grown to mid-log phase at 30 °C (OD600 ≈ 0.6) 
and overexpression of GroEL/ES was induced by 0.4% w/v arabinose for 
1.5 h. Cells were resuspended in fresh media (without arabinose) and induced 
with 1 mM IPTG for 16 h at 16 °C. Cells were lysed by using a Microfluidizer 
high-pressure homogenizer and centrifuged (15,000 RCF, 20 min). Soluble 
protein from whole-cell lysate was 0.2/0.8 μm filtered and subject to ammonium 
sulfate precipitation at the 30–40% cut (where the protein is soluble at 30% w/v 
ammonium sulfate but precipitates at 40% saturation. Precipitated protein was 
resuspended in pH 8.0 lysis buffer, desalted and applied to a MonoQ 10/100 GL 
column (GE Healthcare Life Sciences) equilibrated in Q Buffer A. Protein was 
eluted off the column over a linear NaCl gradient from 5 mM to 1 M. Eluted 
fractions were analysed by SDS–PAGE before concentration and size-exclusion 
chromatography as described for P. breve Rubisco. Samples were stored in  
20 mM sodium phosphate pH 8.0, 150 mM NaCl, 10 mM MgCl2, 10 mM NaHCO3 
at −80 °C.

Syn6301 RbcL expressed without RbcS was prepared in a similar fashion 
to previous reports21,40. Plasmids Syn6301-rbcL-pET11A and pG-KJE8 were 
cotransformed into BL21 DE3 Star E. coli cells. Cells were grown to mid-log phase 
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at 30 °C (OD600 ≈ 0.6) and overexpression of dnaK/dnaJ/grpE was induced by  
0.4% w/v arabinose for 2 h. Cells were resuspended in fresh media (without 
arabinose) and induced with 1 mM IPTG for 16 h at 16 °C. Cells were lysed and 
centrifuged as described for Syn6301 RbcLS. Soluble protein from whole-cell lysate 
was subject to ammonium sulfate precipitation at the 50–60% cut. Precipitated 
protein at 60% saturation was resuspended in lysis buffer and purified via anion 
exchange and size-exclusion chromatography, then stored at −80 °C as described 
for Syn6301 RbcLS.

PAGE analyses. Rubisco samples were activated with excess NaHCO3 and 
incubated with tenfold molar excess 2-carboxyarabinitol 1,5-bisphosphate 
(2CABP) as described previously30. The 2CABP was synthesized according to 
previously described methods50,51. SDS–PAGE samples were prepared according to 
standard procedures in Laemmli Sample Buffer (Bio-rad) with 2-mercaptoethanol 
and heated at 98 °C for 5 min, followed by centrifugation in a benchtop centrifuge 
at maximum speed for 1 min. Samples were resolved on 12% Mini-PROTEAN 
TGX precast protein gels (Bio-rad) in 1 × Tris/Glycine/SDS buffer (Bio-Rad) 
and stained in AcquaStain (Bulldog Bio). Non-denaturing PAGE samples were 
prepared by mixing protein with native sample buffer (Bio-Rad) at 4 °C. Samples 
were resolved at 4 °C on 4–15% Mini-PROTEAN TGX precast protein gels 
(Bio-rad) in 1 × Tris/Glycine buffer (Bio-Rad) and visualized by staining  
with AcquaStain.

Crystallization, X-ray data collection and structure determination. For 
crystallography, P. breve Rubisco was prepared as described above but with a 
final buffer composition of 100 mM HEPES-OH pH 8.0, 100 mM NaCl, 25 mM 
MgCl2, 1 mM DTT, 5 mM NaHCO3. Samples at 10–15 mg ml–1 were activated as 
described above. Samples crystallized in the presence of 2CABP were incubated 
for 1 h at ambient temperature in the presence of a tenfold molar excess of 2CABP 
before setting up crystal trays. P. breve Rubisco protein was screened using the 
crystallization screens: Berkeley Screen52, Crystal Screen, SaltRx, PEG/Ion, Index 
and PEGRx (Hampton Research). The crystals of P. breve Rubisco were found in 
0.1 M Tris pH 8.0 and 30% polyethylene glycol monomethyl ether 2,000 obtained 
by the sitting-drop vapour-diffusion method with drops consisting of a mixture of 
0.2 μl of protein solution and 0.2 μl of reservoir solution.

A crystal of P. breve Rubisco was placed in a reservoir solution containing 20% 
(v/v) glycerol, then flash-cooled in liquid nitrogen. The X-ray datasets for P. breve 
Rubisco were collected at the Berkeley Center for Structural Biology beamline 8.2.2 
of the Advanced Light Source at Lawrence Berkeley National Laboratory (LBNL). 
The diffraction data were recorded using an ADSC-Q315r detector. The datasets 
were processed using the program Xia2 (ref. 53).

The P. breve Rubisco crystal structure was determined by the 
molecular-replacement method with the program PHASER54 within the 
Phenix suite55,56, using as a search model the structure of a Rubisco from 
Thermosynechococcus elongatus (PDB code 2YBV), which shows 57% sequence 
identity to the target. The atomic positions obtained from molecular replacement 
and the resulting electron density maps were used to build the P. breve Rubisco 
structure and initiate crystallographic refinement and model rebuilding. Structure 
refinement was performed using the phenix.refine program56. Translation–
libration–screw (TLS) refinement was used, with each protein chain assigned  
to a separate TLS group. Manual rebuilding using Coot57 and the addition of  
water molecules allowed construction of the final model. The final model of  
P. breve Rubisco has an R factor of 18.8% and an Rfree of 22.5%. Root-mean-square 
deviation differences from ideal geometries for bond lengths, angles and dihedrals 
were calculated with Phenix. The stereochemical quality of the final model of  
P. breve Rubisco was assessed by the program MolProbity58.

Small-angle X-ray–scattering (SAXS) data collection and analysis. Small-angle 
X-ray-scattering (SAXS) coupled with multi-angle light-scattering (MALS) in 
line with size-exclusion chromatography (SEC) experiments were performed 
with 50 µl samples containing 4.6 mg ml–1 of P. breve Rubisco incubated with or 
without 2CABP prepared in 20 mM HEPES-OH (pH 8.0), 300 mM NaCl, 10 mM 
MgCl2, 10 mM NaHCO3. SEC–SAXS–MALS data were collected at the ALS 
beamline 12.3.1 at LBNL59. The X-ray wavelength was set at λ = 1.127 Å and the 
sample-to-detector distance was 2,100 mm resulting in scattering vectors (q) 
ranging from 0.01 to 0.4 Å−1. The scattering vector is defined as q = 4πsinθ/λ, 
where 2θ is the scattering angle. All experiments were performed at 20 °C and 
the data was processed as described previously60. Briefly, a SAXS flow cell was 
directly coupled with an online 1260 Infinity HPLC system (Agilent) using a 
Shodex KW804 column (Showa Denko). The column was equilibrated with 
running buffer (20 mM HEPES-OH pH 8.0, 300 mM NaCl, 10 mM MgCl2, 10 mM 
NaHCO3) with a flow rate of 0.5 ml min–1. A total 90 µl of sample was separated 
by SEC and 3-s X-ray exposures were collected continuously during a 30-min 
elution. The SAXS frames recorded before sample analysis were subtracted from 
all other frames. The subtracted frames were investigated by Rg derived by the 
Guinier approximation, I(q) = I(0) exp(–q2Rg2/3) with the limits qRg < 1.6. The 
elution peak was mapped by comparing integral of ratios to background and Rg 
relative to the recorded frame using the program SCÅTTER. Uniform Rg values 
across an elution peak represent a homogenous assembly. Final merged SAXS 

profiles, derived by integrating multiple frames across the elution peak, were 
used for further analysis including Guinier plot which determined aggregation 
free state. The program SCÅTTER was used to compute the pair-distribution, or 
P(r), functions presented in Fig. 3b. P(r) functions were normalized based on the 
molecular weight determined by SCÅTTER using volume of correlation Vc (ref. 61) 
(Supplementary Table 2). Eluent was subsequently split 3:1 between the SAXS line 
and a series of UV detectors at 280 and 260 nm, a MALS detector, a quasi-elastic 
light-scattering (QELS) detector and a refractometer detector. MALS experiments 
were performed using an 18-angle DAWN HELEOS II light-scattering detector 
connected in tandem to an Optilab refractive index concentration detector (Wyatt 
Technology). System normalization and calibration was performed with bovine 
serum albumin using a 45-μl sample at 10 mg ml–1 in SEC Buffer and a dn/dc value 
of 0.19. The light-scattering experiments were used to perform analytical scale 
chromatographic separations for molecular weight determination of the principal 
peaks in the SEC analysis. UV, MALS and differential refractive index data were 
analysed using Wyatt ASTRA 7 software to monitor the homogeneity of the sample 
across the elution peak complementary to the above-mentioned SEC–SAXS  
signal validation.

SAXS modelling. The atomistic model of P. breve Rubisco in the open 
conformation was prepared on the basis of the crystal structure of the closed 
conformation presented in this study by including missing N- and C-terminal 
residues using the program MODELLER62. Different extensions and compactions 
of the unfolded tails were built to screen conformational variability. The 
experimental SAXS profiles were then compared to theoretical scattering 
curves generated from these atomistic models using FoXS63,64. Theoretical 
scattering profiles were used to calculate P(r) functions and further compared to 
experimental P(r) functions to validate solution-state conformations of  
P. breve Rubisco.

Negative-staining electron microscopy. A total of 3 μl of 1 mg ml–1 of P. breve 
Rubisco in SEC Buffer were applied to a glow-discharged carbon grid (30 mA, 
30 s) and incubated for 1 min at room temperature. Five drops of 2% uranyl acetate 
were then sequentially applied and blotted off for negative staining. Fifty images 
were taken on a JEOL 2100F at ×40,000 nominal magnification, 200 kV, with 
1.48 Å pixel–1 sampling on a DE-20 detector. A total of 4,062 particles were selected 
and two-dimensional classified using cisTEM.

Rubisco activity assays. Rubisco specificity was determined using the method 
of Parry et al.24, with the exception that the activation buffer included 250 mM 
NaCl to enhance the solubility of P. breve Rubisco and a pKa of 6.11 was used for 
calculations. Measurements using Triticale aestivum (bread wheat) Rubisco were 
used for normalization as previously described24 and results from testing with 
T. aestivum Rubisco showed no effect of NaCl in the activation buffer. Purified 
Rubisco was used to determine catalytic properties as described previously65, 
with the following alterations to protein desalting and activation: an aliquot of 
concentrated Rubisco was diluted with an activation mix containing 100 mM 
Bicine-NaOH pH 8.0, 20 mM MgCl2, 250 mM NaCl, 10 mM NaHCO3 and 1% (v/v) 
plant protease inhibitor cocktail (Sigma–Aldrich). This was then incubated on ice 
for 20 min before being used to assay at CO2 concentrations of 20, 40, 60, 120, 280 
and 400 µM. These were combined with O2 concentrations of 0, 21, 40 or 70% (v/v) 
to determine KO. VO was calculated from measured parameters using the equation 
SC/O = (VC/KC)/(VO/KO). VC was determined using measurements with 0% O2. An 
aliquot of the activated protein was used for determination of Rubisco active sites 
via 14C-CABP binding using the method of Sharwood et al.66 with 250 mM NaCl, 
instead of the typical 75 mM, in the activation buffer.

Protein thermal shift (PTS) assay. The PTS assay was conducted using a Protein 
Thermal Shift kit (Thermo Fisher). Samples were prepared with 1 mg ml–1 protein 
in 1 × PTS phosphate buffer and 4 × PTS dye in Thermo Fisher MicroAmp Optical 
8-Tube Strips. The assay was conducted on an Applied Biosciences QuantStudio 3 
machine for quantitative PCR with reverse transcription. The assay consisted of 
initial cooling and hold at 16 °C for 1 min, followed by an 0.05 °C s–1 increase to 
95 °C and a final hold at 95 °C for 1 min. Data were analysed in Protein Thermal 
Shift Software.

Other software. Structure-based sequence alignments were conducted using 
PROMALS3D (ref. 67) and MAFFT (ref. 68). Analyses of protein amino acid 
contacts and subunit interface thermodynamics were performed using CCP4 
CONTACTS (ref. 69) and PISA (refs. 70,71), respectively. UCSF Chimera (ref. 72) was 
used for the visualization of protein models, generating electrostatic potential maps 
and the preparation of manuscript figures.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Form I' RbcL amino acid sequences are included as Supplementary Data 1. 
Sequences used to generate Fig. 1a were uploaded to figshare (https://doi.
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org/10.6084/m9.figshare.9980630) along with the associated phylogenetic tree. 
Representative MAG genbank scaffolds are included as Supplementary Data 2. 
Site-directed mutagenesis primers and synthesized candidate form I' rbcL genes are 
included as Supplementary Data 3. The structural coordinates of 2CABP-bound 
P. breve Rubisco have been deposited in the PDB under the accession ID 6URA. 
The crystal structure of Syn6301 Rubisco can be found on the PDB under the 
accession ID 1RBL. Publicly available databases used in this study include: 
PDB (https://www.rcsb.org/), pfam (https://pfam.xfam.org/), TIGRfams (www.
tigrfams.jcvi.org) and KEGG database (https://www.genome.jp/).Two Chloroflexi 
genomes identified in this study are available at: https://ggkbase.berkeley.edu/
Chloroflexi_Rubisco_PatrickShih/organisms.
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Extended Data Fig. 1 | Distribution of form I' Chloroflexi genomes. Maximum-likelihood phylogenetic tree of Chloroflexi using ribosomal protein S3 
(rpS3) as a marker gene. To map the distribution of form I' Rubisco genes onto genomes, all MAGs were scanned for presence of both rpS3 and form I' 
Rubisco. MAGs containing form I' Rubisco are highlighted in orange. The scaffolds that encode RbcL vary in size substantially, ranging up to ~106 kbp 
in length (available as Supplementary Data). At least partial genomic context could be determined in most cases and the gene for phosphoribulokinase 
was adjacent. In some cases, additional CBB Cycle pathway genes were present in an operon with Rubisco, strongly supporting the function of Rubisco 
in this pathway. In a subset of cases, other pentose phosphate pathway genes were co-encoded. In no case was there evidence for RbcS, either on the 
scaffold or in the draft genome bin (where a bin was available). Gene predictions were established via a standard annotation pipeline73,74 and augmented 
by HMM-based profiling and domain analysis.
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Extended Data Fig. 2 | In form I-containing Chloroflexi operons, rbcL and rbcS are always found next to each other, unlike form I'-containing Chloroflexi 
operons that lack rbcS. Fragment operons from an example set of 10 form I Rubisco-containing Chloroflexi genomes shows that rbcS is always found next 
to rbcL, similar to form I Rubisco found in cyanobacteria and proteobacteria11. form I' Rubisco-containing Chloroflexi genomes do not contain small subunit 
rbcS (Fig. 1b). Scaffold names are shown to the right of their corresponding genome fragments.
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Extended Data Fig. 3 | PAGE analyses. a, Non-denaturing PAGE gel with a molecular weight marker (M, lane 1), and purified proteins of all three 
candidate form I' Rubisco (P. breve, 241187, and 170907) with (+) or without (-) prior activation and incubation with 10-fold molar excess of 2CABP. 
241187 and 170907 denotes scaffolds B_1_S1_170907_scaffold_241187_5_Tax=RBG_16_Chloroflexi_63_12 and S_p2_S4_170907_scaffold_85440 
Rubisco, respectively. b, SDS–PAGE analysis of crude cell lysate from 1) overexpression of untagged P. breve Rubisco with co-expression of GroEL/ES from 
pBAD33EL/ES, 2) overexpression of His14-bdSUMO-tagged P. breve Rubisco with co-expression of GroEL/ES from pBAD33EL/ES, and 3) overexpression 
of His14-bdSUMO-tagged P. breve Rubisco without overexpression of GroEL/ES (background GroEL/ES expression from E. coli). Without GroEL/ES 
overexpression, untagged RbcL comprises 8 ± 1.0 (n = 3) of the total soluble protein, which improves to 14 ± 0.5 (n = 3) when GroEL/ES overexpression in 
induced (see Methods). When the His14-bdSUMO tag is included on the N-terminal end of RbcL, soluble expression is 7 ± 0.8 (n = 3) and 14 ± 0.8 (n = 3) 
of the total soluble protein, without and with GroEL/ES overexpression, respectively. Reported values collected from n separate experiments (separately 
grown E. coli cultures) reflect the mean ± standard deviation.
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Extended Data Fig. 4 | See next page for caption.

Nature Plants | www.nature.com/natureplants

http://www.nature.com/natureplants


Articles NaTuRE PlanTSArticles NaTuRE PlanTS

Extended Data Fig. 4 | Form I Rubisco possess a unique RbcL C-terminal extension that interacts with RbcS, which is not found in form I' Rubisco.  
a, Sequence alignment of representative Rubisco RbcL sequences from forms I, I', II, II/III, IIIA and IIIb. Strictly conserved residues have a red background, 
residues well conserved within a group are indicated by red letters, and the remaining residues are in black letters. Gaps are represented by dots. 
Residue numbering along the top refers to P. breve RbcL. Symbols above blocks of sequences correspond to the secondary structure of P. breve RbcL: 
α, α-helix; β, β-strand; η, 310-helix. The secondary structure elements were named according to Knight et al., 199075. The positions of loop 6 (black 
dotted lined), the form II/III-specific Rubisco assembly domain (cyan line), and the form I-specific C-terminal extension (purple line) are indicated. 
The RbcX binding domain-specific to form IB Rubisco is boxed in pink. The sequence alignment was created using the UniProt RbcL sequences P22859 
(Allochromatium vinosum), O85040 (Halothiobacillus neapolitanus), A0A4D4IZ26 (Zea mays), P00880 (Syn6301), Q1QH22 (Nitrobacter hamburgensis), 
Q3IYC2 (Rhodobacter sphaeroides), P51226 (Porphyra purpurea), Q9GGQ2 (Vaucheria litorea), E1IGS1 (Oscillochloris trichoides), A0A0P9FAF0 (Kouleothrix 
aurantiaca), A4WW35 (Rhodobacter sphaeroides), P04718 (Rhodospirillum rubrum), Q12TQ0 (Methanococcoides burtonii), A0A1L3Q3Y6 (Methanohalophilus 
halophilus), B5IH56 (Aciduliprofundum boonei), O93627 (Thermococcus kodakarensis), J1ANE7 (Methanofollis liminatans), and Q2FSY4 (Methanospirillum 
hungatei). The sequences for representative form I' homologues are presented in this study (Supplementary Data 1). b, Overlay of amino acid residues 
408-458 of Syn6301 Rubisco (tan) with residues 415-453 of P. breve Rubisco (blue) depicting the unique RbcL C-terminal extension found in form I 
enzymes, but not in Rubisco homologues that do not possess RbcS. Residues R428, N429, and E430 of Syn6301 RbcL contact residues N29 and Y32 at the 
interface of Syn6301 RbcS (purple).
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Extended Data Fig. 5 | Negative-staining electron microscopy 2D images of P. breve Rubisco. Images reflect the highest resolution data collected with 
activated P. breve Rubisco in phosphate buffer. The experiment was performed once (n = 1).
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Extended Data Fig. 6 | Extended SEC-SAXS-MALS data. Experimental SAXS profiles (black) of P. breve Rubisco in the absence (purple) or presence 
(blue) of bound 2CABP is displayed with the calculated scattering from the atomistic models shown in Fig. 3c. Inset shows the Guinier plot of experimental 
SAXS profiles with the linear fit in the q×Rg < 1.6 limits.
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Extended Data Fig. 7 | Amino acid sequence alignment of Syn6301 RbcL and P. breve RbcL. a, Structure-based sequence alignment was originally made 
using PROMALS3D67 using 1RBL and 6URA structures, then aligned with the complete RbcL sequences using MAFFT68. Darker shades indicate higher 
sequence conservation between amino acids. Syn6301 and P. breve RbcL residues involved in dimer–dimer interactions are highlighted in green and blue, 
respectively. Syn6301 RbcL residues involved in RbcS contacts are annotated with red stars. All contact residues were identified using CCP4 CONTACTS69. 
b-c, Cross-section depictions of 1RBL, without RbcS, and P. breve Rubisco highlighting dimer–dimer interactions as in panel a. d, Map of Syn6301 RbcL 
residues involved in RbcS interactions, highlighted in red as in panel a.
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Extended Data Fig. 8 | Mutating key amino acid residues at the dimer–dimer interface of P. breve Rubisco disrupts octameric oligomeric assembly. 
Native PAGE gel of recombinant WT, K150A, D161A, W165A, D220A, and Y224A P. breve Rubisco. Native Mark protein ladder denoted by ‘M’. 
Site-directed mutants destabilize the interface between RbcL dimers leading to break down of higher-order (that is, L8) oligomers into Rubisco species 
with variable oligomeric state and conformations, which results in a variety of lower molecular weight migration patterns within the Native PAGE gel. 
Experiment was performed once (n = 1).
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Extended Data Fig. 9 | Site-directed mutagenesis of Syn6301 dimer–dimer interface residues imparts marginal stability in the absence of RbcS.  
a, Protein thermal shift data displaying the mean fluorescent signal collected from four separate trials for WT Syn6301 RbcL, three separate mutant 
proteins, L158W, V154D, D349R and a combined four mutant protein, 4SDM (L158W, V154D, F217Y, and D349R). Mutations were designed to reflect 
homologous dimer–dimer interface residues present in P. breve Rubisco. The peaks corresponding to thermal denaturation of L8 quaternary structure 
are boxed, and analysis statistics are presented in the below table. Tm values represent the mean and standard deviation of n number of experiments 
conducted with the same protein sample. Two-tailed P-values for unpaired t test with Welch’s corrections are reported in the last column using WT 
Syn6301 RbcL as the reference comparison. n = number of technical replicates conducted in experiment. ns = not significant. ** P < 0.005, *** P < 0.0005. 
b, Native gel of purified recombinant WT and mutant Syn6301 proteins used in experiment.
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