
RESEARCH Open Access

Chromosome-level genome assembly of a
regenerable maize inbred line A188
Guifang Lin1†, Cheng He1†, Jun Zheng2†, Dal-Hoe Koo1, Ha Le1, Huakun Zheng1, Tej Man Tamang3, Jinguang Lin1,4,
Yan Liu2, Mingxia Zhao1, Yangfan Hao1, Frank McFraland5, Bo Wang6, Yang Qin2, Haibao Tang7,
Donald R. McCarty8, Hairong Wei9, Myeong-Je Cho10, Sunghun Park3, Heidi Kaeppler5, Shawn M. Kaeppler5,
Yunjun Liu2, Nathan Springer11, Patrick S. Schnable12, Guoying Wang2, Frank F. White13 and Sanzhen Liu1*

* Correspondence: liu3zhen@ksu.
edu
†Guifang Lin, Cheng He and Jun
Zheng contributed equally to this
work.
1Department of Plant Pathology,
Kansas State University, 4024
Throckmorton Center, Manhattan,
KS 66506-5502, USA
Full list of author information is
available at the end of the article

Abstract

Background: The maize inbred line A188 is an attractive model for elucidation of
gene function and improvement due to its high embryogenic capacity and many
contrasting traits to the first maize reference genome, B73, and other elite lines. The
lack of a genome assembly of A188 limits its use as a model for functional studies.

Results: Here, we present a chromosome-level genome assembly of A188 using
long reads and optical maps. Comparison of A188 with B73 using both whole-
genome alignments and read depths from sequencing reads identify approximately
1.1 Gb of syntenic sequences as well as extensive structural variation, including a 1.8-
Mb duplication containing the Gametophyte factor1 locus for unilateral cross-
incompatibility, and six inversions of 0.7 Mb or greater. Increased copy number of
carotenoid cleavage dioxygenase 1 (ccd1) in A188 is associated with elevated
expression during seed development. High ccd1 expression in seeds together with
low expression of yellow endosperm 1 (y1) reduces carotenoid accumulation,
accounting for the white seed phenotype of A188. Furthermore, transcriptome and
epigenome analyses reveal enhanced expression of defense pathways and altered
DNA methylation patterns of the embryonic callus.

Conclusions: The A188 genome assembly provides a high-resolution sequence for a
complex genome species and a foundational resource for analyses of genome
variation and gene function in maize. The genome, in comparison to B73, contains
extensive intra-species structural variations and other genetic differences. Expression
and network analyses identify discrete profiles for embryonic callus and other tissues.
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Background
The maize inbred line A188 was derived from a line related to the commercial maize

variety Silver King and a northwestern dent line [1]. A188 has a mixed origin and be-

longs to neither of the two major heterotic breeding groups [2, 3]. A188 is amenable to

somatic embryogenic culture and regeneration and was the first maize line used to
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produce genetically modified plants [4]. A popular maize transformation line, Hi-II,

was isolated from offspring of a cross between A188 and B73, an elite maize reference

inbred line [5, 6]. Although highly valuable for plant regeneration and transformation,

A188 is not agronomically desirable, having small ears and low grain yield. The line

also exhibits a high degree response to environmental conditions, including sensitivity

to abiotic and biotic stresses, such as drought, heat, and bacterial and fungal diseases,

in comparison to elite maize lines [7]. A188, therefore, in addition to traits related to

transformability, can serve as a model inbred line for the genetic dissection of many im-

portant agronomic traits, heterosis, and plant-environment interactions.

Efforts have been pursued to develop efficiency and quality strategies for maize gen-

ome sequencing and assemblies. The first maize reference genome for B73 was se-

quenced and assembled using bacterial artificial chromosomes (BACs) [8]. Since then,

additional assemblies have been produced using so-called next-generation high-

throughput sequencing, including both short- and long-read technologies [9–15]. Re-

cently, long-read technologies were combined with optical DNA mapping to produce

high-continuity maize assemblies, including Nested Association Mapping (NAM)

founder lines [16–18]. Here, we used Nanopore long reads and optical DNA mapping

to construct a chromosome-level maize genome of A188 for the discovery of structural

variation as well as performed transcriptome and DNA methylome analyses of embryo-

genic callus.

Results
Phenotype of A188

Inbred line A188 (PI 693339) has smaller ears and lower grain yield in comparison to

the community reference line B73 and is amenable to plant transformation due to

abundant production of the callus favorable to regeneration (Fig. 1, Additional file 1:

Figure S1, Additional file 2: Table S1). Hybrids of A188 and B73 (PI 550473) exhibit ex-

tensive heterosis (Additional file 1: Figure S2).

Chromosome-level A188 assembly

Long reads, representing a 90X coverage, were generated from A188 genomic DNA

using the Oxford Nanopore sequencing platform. The N50 of read lengths is 23.9 kb,

and the longest read is 270.6 kb (Additional file 1: Figure S3). Genome assembly, per-

formed using Canu, resulted in 1830 contigs, comprising approximately 2.2 Gb of total

sequences. The N50 of contigs is 5.99 Mb (Additional file 2: Table S2).

Read depths for contigs were assessed using Illumina short reads generated independ-

ently from seedling and immature ear DNAs to identify potential contamination from

organelle genomes or extraneous microbial DNA. Contigs from organelle genomes or

extraneous microbial DNA were expected to have differential read depths between the

two tissues. Based on this strategy, contigs identified as the chloroplast or mitochon-

drion sequences were replaced respectively with the previously complete assemblies of

A188 organelle genomes [19, 20] and contigs from extraneous contamination were dis-

carded (Additional file 1: Figure S4). The remaining contigs were polished using raw

Nanopore data and 80X PCR-free Illumina 2x250 paired-end whole-genome sequen-

cing reads (Additional file 2: Table S3), followed by the scaffolding with 113 A188
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Bionano Genome (BNG) optical maps (Additional file 2: Table S4), for which the total

length is 2.17 Gb and the N50 is 103.4 Mb. The BNG aided assembly placed 875 con-

tigs into 39 scaffolds, which consist of 2.15 Gb. Chromosome pseudomolecules were

then generated using a genetic map constructed from 100 B73xA188 double haploid

(DH) lines (Additional file 2: Table S5). The final assembly (A188Ref1) consists of 2.25

Gb, including 10 chromosomal pseudomolecules, a mitochondrial genome, a chloro-

plast genome, and 986 scaffolds or contigs (Table 1).

The base accuracy of the A188Ref1 assembly was estimated at approximately 99.82%

using the KAD pipeline [21]. Approximately 96.4% of the potential errors are in trans-

posons or other repetitive sequences. The estimated accuracy of genic sequences was

>99.97%. The completeness of the A188 assembly was assessed using the BUSCO soft-

ware [22] and found to contain 97.25% (3189/3278) of the Liliopsida core gene set,

similar to the 97.36% (3193/3278) in the B73 reference genome (B73Ref4) [9].

Presence of complex repeats and nuclear organelle sequences in A188Ref1

In total, 86.3% of the A188 genome sequence is annotated as repetitive elements. The

long terminal repeat (LTR) retrotransposons Gypsy and Copia were the most prevalent

elements, consisting of 44% and 23.9% of A188Ref1, respectively (Fig. 2, circos plot

[23]). LTR centromere retrotransposon of maize (CRM) were largely co-localized with

centromere-specific satellite repeat CentC, both of which were largely syntenic to the

B73 centromeres [9]. Approximately 8.3% of A188Ref1 is annotated as DNA transpos-

able elements (TEs), including helitron and Miniature Inverted-repeat Transposable

Fig. 1 Ear photos of A188 and B73
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Table 1 Summary of A188Ref1 assembly and annotation
Chromosome Length (bp) # genes # transcripts

1 307,989,483 6034 9265

2 251,027,758 4873 7384

3 243,219,806 4313 6619

4 255,421,021 4315 6640

5 229,324,730 4613 7194

6 181,596,323 3412 5134

7 183,343,242 3208 4864

8 182,018,909 3653 5472

9 165,494,689 3082 4704

10 153,829,095 2824 4254

mt 525,405 40 40

pt 140,437 39 41

Scaffolds (N = 986) 9,2920,514 341 531

Sum 2,246,851,412 40,747* 62,142

*Filtered from 46,009 gene models produced by Maker

Fig. 2 Circos plot of genomic features. Features on chromosomes are (a) recombination rate (cM/Mb); (b) gene
density per Mb; (c) gene clusters; (d) number of Gypsy per Mb; (e) number of Copia per Mb; (f) number of
MITEs per Mb; (g) high-copy repetitive elements. The central inset is the legend for the track of g. Tracks of b, d,
e, and f are intensity-coded. The higher the intensity, the higher the frequency of each element. Centromeres
are in orange on the outmost chromosome track, on which numbers are coordinates in Mb
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Elements (MITEs) (Fig. 2). Major knob clusters were found on the long arm of chro-

mosomes 5 (5L), the short arm of chromosome 6 (6S), 7L, and 8L, and major subtelo-

meric repeats (4-12-1) were clustered on the distal regions of 1S, 3S, 4S, 5S, and 8L

(Fig. 2). Through similarity alignments, the 45S and 5S ribosomal DNA (rDNA) clus-

ters were localized on 6S and 2L, respectively (Fig. 2). Knob and rDNA locations were

in agreement with previously reported A188 fluorescent in situ hybridization (FISH)

data [24]. Most repetitive components were located in regions of low-recombination

contexts except the 5S rDNA locus and subtelomeric clusters (Additional file 1: Figure

S5).

Nuclear mitochondrial DNA (NUMT) and nuclear plastid (chloroplast) DNA (NUPT)

were identified at 10 and 21 genomic loci, respectively (Fig. 3a, Additional file 1: Figure

S6). The largest nuclear organelle-like sequence (~136 kb) is a NUMT locus on the

short arm of chromosome 8, which contains an array of DNA transposons likely

inserted subsequent to the NUMT integration. FISH analysis corroborated the chromo-

some 8 location and confirmed a homolog on the distal end of 10S (Fig. 3b, c). In sum-

mary, the genomic locations of repetitive sequences and nuclear organelle sequences

Fig. 3 NUMT on A188 nuclear genomes. a NUMT sequence on 10 chromosomes of A188Ref1. Each dot on
chromosomes designates a potential NUMT integration. Close-up alignments with the mitochondrion (mt)
genome are shown along NUMTs. Each alignment requires at least 5 kb match and 95% identity. b Circos
plot of alignments between the mt genome and 10 chromosomes. The same colors of green, orange, dark
blue label duplicated regions in mt. “P” regions match the probe sequence used for FISH. Brown links
highlight alignments on chromosomes 8 and 10. Note that the chromosomal scale is different from the mt
scale. Numbers on the track are in Mb. c Physical mapping of a mt DNA (mtDNA) and knob repeats on the
mitotic metaphase chromosomes of maize A188. The knob repeat probe (green signals) was used to
identify the chromosomes. Two FISH sites of the mtDNA insertion on the chromosomes were detected:
arrowheads, chromosome 8; arrows, chromosome 10. Bar = 10 μm
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are largely consistent with previous findings by FISH [25, 26], supporting the large-

scale correctness of A188Ref1.

Gene annotation

Annotation of A188Ref1 was performed using the Maker pipeline with evidence from

transcripts assembled with A188 long Nanopore direct cDNA sequencing data, A188

RNA-Seq Illumina short reads, and transcripts from other maize lines, as well as pro-

tein sequences from closely related plant species. The Maker genome annotation re-

sulted in 40,747 high-confidence gene models with 62,142 transcripts (A188Ref1a1)

(Table 1). BUSCO evaluation showed that 97.8% of Liliopsida conserved genes were in

A188Ref1a1. Comparison of protein sequences identified 52,971 orthologous pairs be-

tween A188 and B73, consisting of 27,273 A188 genes and 27,529 B73 genes. We also

identified 178 gene clusters in A188 each of which contains at least three paralogous

genes, comprising in total 694 genes. The clusters of genes encoding pectin methyles-

terase (PME) were identified on an unanchored scaffold c04_002 (two clusters with 25

and 18 genes), on chromosome 4 (one cluster with nine genes), and on chromosome 5

(one cluster with five genes) (Fig. 4a). Gene clusters also include eight clusters of 42

nucleotide-binding leucine-rich repeat (NLR) disease resistance (R) genes (Fig. 4a). One

NLR gene cluster on chromosome 10 has 16 genes homologous to the rp1 gene that

confers resistance to common rust [27] and was associated with Goss’s wilt resistance

[28] (Fig. 4b). Most paralogous clusters were not located in regions with high recom-

bination (Fig. 4c). Exceptions include the rp1 locus, which has a high level of haplotype

instability through frequent recombination among rp1 paralogs [29–31]. Divergent rp1

haplotypes were observed between A188 and B73 that contains 11 rp1 homologs at the

syntenic locus (Fig. 4b).

We identified 2259 paralogous gene pairs of which one member was located in a

high-recombination chromosomal compartment and the other in a low-recombination

compartment (“Methods” section). Comparison of DNA methylation of A188 seedlings

found that, on average, both CG and CHG methylation, where H represents A, C, or T,

were higher near and within low-recombination paralogous genes as compared to high-

recombination genes. No obvious differences were observed in CHH methylation (Fig.

4d–f). Comparison of gene expression between members of the paralogous pairs using

seedling RNA-Seq data showed most paralogs had similar expression levels and no ex-

pression bias to either high- or low-recombination genes was observed for those para-

logs that did exhibit differential expression (Additional file 1: Figure S7). The result

indicated that the genomic context of genes is a driver for a certain epigenomic modifi-

cation but not a major driver for gene expression.

High-level structural variation between A188 and B73

Structural variation between the A188 and B73 genomes was identified through com-

parisons of whole-genome assemblies of both genomes using SyRI software (Additional

file 3) [32] and through the analysis of whole-genome Illumina sequencing reads with

Comparative Genomic Read Depth (CGRD) that is based on quantitative comparison

of depths of short reads (Additional files 4 and 5) [33]. SyRI revealed ~1.1 Gb of syn-

tenic regions, 2302 translocations, and 4083 duplications in B73 and 2333 duplications
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in A188 using a minimum cutoff of 10 kb for each translocation or duplication event

(Additional file 2: Table S6). In addition, SyRI identified 441.9 Mb of B73 and 543.8

Mb of A188 DNA sequences that were not aligned with the other respective genome.

Further filtering with CGRD that compared read depths between the two genomes re-

vealed 381.3 Mb of B73-specific sequences and 409.2 Mb of A188-specific sequences

that represent presence and absence variance (PAV) or highly divergent sequences

(HDS). These PAV/HDS regions contain 6728 genes in B73 and 7301 genes in A188

(Additional files 6 and 7). Gene ontology enrichment analysis indicated that genes re-

lated to endopeptidase inhibitor activity and extracellular activities are enriched in both

PAV/HDS gene sets (Additional file 1: Figure S8).

Seventeen large inversions of 0.5 Mb or greater were identified between the two ge-

nomes (Fig. 5, Additional file 1: Figures S9-S17, Additional file 2: Table S7). Nine of the

seventeen inversions are likely errors in B73Ref4 as the newly released B73Ref5 showed

the same orientation as A188Ref1, including the largest inversion region (INV37083 on

B73Ref4, 97.8–103.9 Mb on chromosome 4). FISH analysis of A188 and B73 corrobo-

rated the absence of inversion INV37083 (Additional file 1: Figure S18). Recombination

and pairwise linkage disequilibrium (LD, R2) values among single nucleotide polymor-

phisms (SNPs) within each inversion were determined, and out of eight remaining in-

version candidates, six have recombination frequencies close to 0 and a high mean LD

ranging from 0.56 to 0.79 of all pairs of SNPs that are separated by 0.2–0.3 Mb within

Fig. 4 Gene clusters and paralogs in low- and high-recombination regions. a The scatter plot of numbers
of genes per cluster versus their cluster size. b Example of an NLR gene (rp1) cluster in A188 and their
alignments with the B73 rp1 locus. Each rectangle box represents a gene with blue, tan, and red colors
indicating plus, minus orientation, and rp1 homologous genes, respectively. All rp1 homologs are in the
same minus orientation. Gray bands connect orthologs and orange bands highlight the top rp1 alignments
with at least 98.5% identity and a 2500-bp match. c The scatter plot of numbers of genes per cluster versus
the recombination rate estimated 1 Mb around the midpoint of the cluster. All clusters plotted are on 10
chromosomes. d–f Distribution of cytosine methylation in sequence contexts of CG, CHG, and CHH around
paralogous genes. An average methylation rate per window across all examined genes from two replicates
of seedling samples was determined and plotted versus the window order. A window in the gene body,
from translation start site (TSS) to translation termination site (TSS), is 1/200 of the gene body in length. A
window outside of the gene body is 20 bp
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an inversion, which are much higher than the genome-wide average LD of 0.2 between

SNPs in separated by 0.2 Mb (Additional file 2: Table S7). These six inversions exhibit-

ing marked recombination suppression characteristic of inversion [34], therefore, are

strongly supported. The six inversions range from 0.7 to 2.1 Mb in size, of which two

are located close to the centromere of chromosome 2 and four are on 3L, 4L, 5L, and

9L (Additional file 2: Table S7). Each of these six inversions can be identified between

A188Ref1 and many other maize genomes, including the genomes of NAM founder

lines (Additional file 1: Figure S19-S23, Additional file 2: Table S8). In total, the six in-

version sequences harbor 69 genes in B73 and 75 genes in A188. The syntenic relation-

ships of these genes were largely maintained between inverted sequences in the two

genomes (example in Fig. 5d), although the gene sequences are divergent in a high

Fig. 5 Megabase-level duplication and inversion on chromosome 4. a–c SyRI and CGRD results on
chromosome 4. a The CGRD result using A188Ref1 as the reference genome. The Y-axis represents log2
values of ratios of read depths of B73 to A188, log2(B:A), signifying copy number variation (CNV). Regions
with higher and lower sequence depths of B73 versus A188 were B73 plus (red) and B73 minus (blue),
respectively. Green and orange represent conserved and ungrouped regions, respectively. b The SyRI result
is displayed. Alignments of syntenic blocks larger than 10 kb and alignments of other rearrangements larger
than 0.5 Mb are plotted. On each A188 and B73 chromosome, segments that were not aligned to the other
genome or highly divergent with the other genome are highlighted. The red * labels a well-evidenced
inversion. c The CGRD result using B73Ref4 as the reference genome. The similar color scheme to that in a
is used. d Synteny of genes (rectangle blocks) in the well-evidenced inversion (ABinv4a) regions between
A188 and B73. Blue and tan colors stand for plus and minus gene orientations. e A dot plot between the
1.8-Mb B73 region that was duplicated in A188 and its aligned regions in A188Ref1. f FISH of the PME
probe on A188, B73, and F1 (B73xA188). Cent4 probe (green) that is specifically from chromosome 4
centromere was used in F1 FISH. Arrows and arrowheads point at PME signals of A188 and B73
chromosomes, respectively. Bar = 10 μm
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degree from each other (Fig. 5b, Additional file 1: Figures S10, S11, S12, S16). The di-

vergence of these inversions indicated that the inversions were not recent events estab-

lished in modern maize populations. Admixture structure analysis showed that both

A188 and B73 haplotypes of 3/6 inversions (ABinv2a, ABinv2b, and ABinv3a) exist in

teosinte, the maize wild ancestor (Additional file 1: Figure S24), and there is no clear

evidence of the haplotype of the remaining three inversions (ABinv4a, ABinv5a, and

ABinv9a) existed in teosinte (Additional file 1: Figure S25). Among landraces, both the

A188 and B73 haplotypes of each of the six inversions could be identified based on

SNP genotyping data, supporting that all these six inversions exist in landrace maize

lines (Additional file 1: Figures S24 and S25).

CGRD analysis also identified an A188 duplication of a 1.8-Mb region from 8.68 to

10.45 Mb on chromosome 4 of B73Ref4 (Fig. 5c). In A188, a portion of the duplication

was found in the unanchored scaffold c04_002 while most of the remaining duplicated

sequences can be found in chromosome 4 (Fig. 5e). The duplication region overlapped

with the Gametophyte factor1 (Ga1) locus conferring unilateral cross-incompatibility

[35]. The underlying causal gene of B73, Zm00001d048936, encodes a PME, which is a

wildtype allele. We designed a PME DNA probe that is from the duplication and re-

peatedly matches 35 loci in B73Ref4 and 78 loci in both the region on chromosome 4

and the scaffold c04_002 on A188Ref1. FISH using this probe resulted in strong

hybridization signals on A188 chromosome 4S and weak signals on B73 chromosome 4S,

indicating that the duplication occurred locally on 4S (Fig. 5f). The B73 Zm00001d048936

gene has no additional homologous copies in B73Ref4 but five homologous sequences can

be identified on the duplicated sequence of A188Ref1, including the syntenic gene

Zm00056a022745 that is identical to Zm00001d048936. Collectively, the result docu-

mented the complexity and the potential dynamic of the Ga1 locus of maize.

Associating structural variation with phenotypic variation

The CGRD result indicated that A188 had many more copies (A188plus) at a region

from 155.23 to 155.24 Mb of chromosome 9 in B73Ref4 (Additional file 1: Figure S16).

This region includes the carotenoid cleavage dioxygenase 1 (ccd1) gene catalyzing the

cleavage of carotenoids to apocarotenoid products, which is located at the White cap

locus (Wc1) conditioning kernel colors [36]. SyRI analysis supported a duplication of

this region but failed to find a number of copies in A188. SyRI analysis also indicated

the duplicated region is embedded in A188-specific sequences (Fig. 6a). Comparison of

A188Ref1 with an A188 BNG optical map aligned to the duplication region indicated

the incomplete assembly of the region. Previously, tandem repeats of an ~27 kb se-

quence at the Wc1 locus were discovered [37]. Each repeat exhibits four discernible

sites that can be detected via Bionano analysis, referred to as Type A repeat. Analysis

of A188 sequences revealed a repeat variant containing an additional site, referred to as

Type B repeat. Based on the BNG map, the A188 genome contains 13 intact tandem

copies of the 27-kb sequence, consisting of 9 copies of Type A and 4 copies of Type B

repeats, as well as partial copies of the 27-kb sequence on both ends of the array. Each

repeat copy contains a ccd1 gene, indicating at least 13 copies of ccd1 in A188 (Fig. 6b),

consistent with the A188plus result from the CGRD analysis. Neither intact Type A

nor B repeat exists in B73, which, however, does contain a ccd1 gene.
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A188 seeds are white, whereas B73 seeds are yellow (Fig. 1). Analysis of quantitative

trait locus (QTL) of kernel colors of B73xA188 DH lines resulted in two major QTLs

on chromosomes 6 and 9, both of which were discovered in a previous genome-wide

association study [38], as well as a weaker peak on chromosome 2 (Fig. 6c, Additional

file 1: Figure S26). Two known genes y1 and ccd1 in the major peaks are responsible

for kernel colors (Fig. 6d) [37, 39]. The dominant Y1 allele conditions yellow kernels

[39]. Several variants exist between the A188 y1 (Zm00056a032392) and B73 Y1

(Zm00001d036345) alleles, including one amino acid polymorphism (Ser258Thr) in the

Fig. 6 Structural variation and genetic analysis of the Wc1 locus. a Duplication alignments between A188
and a B73 region identified as A188plus by CGRD. b Tandem repeats of 13 intact copies of 27.4-kb
sequences. Two DLE-1 restriction patterns in repeat units: Types A and B were identified. c The QTL result of
kernel color using the DH population. Arrows point at locations of known causal genes. d A simplified
carotenoid pathway. GGPP stands for geranylgeranyl diphosphate. e Seeds at 16 days after pollination
(DAP16) were collected and used for quantifying gene expression (exp) of y1 and ccd1. Three biological
replicates were used. Bars are color-coded based on the colors of mature seeds. Error bars represent
standard deviation (SD). Letters on top of bars are statistical groups determined by Tukey tests. Y1 (wc1)
and y1 (Wc1) stand for B73 and A188 alleles, respectively. Mature seeds from the same lines show slightly
different colors from seeds of DAP16. Total carotenoids of mature seeds were measured and the values of
mean ± SD are listed. Superscript letters are statistical groups determined by Tukey tests
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coding region (Additional file 1: Figure S27) and polymorphisms found in 5′ upstream

and 3′ downstream regions, including a (CCA)n microsatellite variation in the 5′ un-

translated region [40] (Additional file 1: Figure S28). Quantitative reverse transcription

PCR (qRT-PCR) reveals higher expression of the y1 gene in B73 relative to A188 (Fig.

6e). In contrast, the B73 ccd1 expression was much lower than that of A188, presum-

ably due to the differences in copy number (Fig. 6e). Because higher expression of func-

tional alleles of the ccd1 and y1 genes is expected to reduce and increase the

accumulation of carotenoids, respectively, the differences in the expression of the ccd1

and y1 genes in B73 and A188 explain yellow kernels of B73 and white kernels of A188

(Fig. 6d, e). Consistently, B73 mature seeds contained much high carotenoid contents

as compared to A188 mature seeds (Fig. 6e). The expression levels of the alleles in two

DH lines with different allele combinations of these two loci were similar, and the allele

combination of y1 and ccd1 largely determined the level of carotenoids and seed colors

(Fig. 6e).

In addition to kernel color, QTL analysis of cob glume color of which A188 is white

and B73 is red mapped a single strong peak on chromosome 1S (LOD = 23.8) (Additional

file 1: Figure S29). Pericarp color 1 (P1) encoding a MYB transcription factor located in

the QTL peak was known to regulate pigment genes [41]. The CGRD result indicated that

B73 had more copies of the P1 gene than A188, presenting another structural variation

event associated with a phenotypic trait (Additional file 1: Figure S29).

Distinct gene expression and hypermethylation in calli relative to seedlings

Transcriptomic data were generated for 11 diverse tissues with three biological repli-

cates each. Both principal component analysis and clustering of these tissue samples

based on their genome-wide gene expression showed that the callus from tissue culture

were closely related to root, leaf base, embryo, and ear, but distinct from middle leaf,

leaf tip, and seedlings (Additional file 1: Figure S25, Additional file 8). A set of 734

callus featured genes were identified that exhibited at least 2-fold up-regulation in the

callus as compared to any other tissues (Additional file 2: Table S9). Genes involved in

cell wall biosynthesis, defense activity, heme binding, transmembrane transport, and

transcription regulation are enriched in these featured genes (Additional file 1: Figure

S30). For example, a number of NLR and defense-related genes, including Pathogen-

esis-related protein 1 (PR1) (Zm00056a001451), were activated in the callus. The top

six enriched transcription factor families are WOX, AUX/IAA, LBD, AP2, WRKY, and

NAC, which included homologs of Baby boom (AP2) and Wuschel2 (Wox) genes rele-

vant to cell division and expansion (Additional file 1: Figure S31) [42]. Of these callus

featured genes, the homologs of Baby boom (Zm00056a020360), Wuschel2

(Zm00056a020673), and LBD (Zm00056a020860) are located in the vicinity of the

chromosome 3 locus affecting callus development [43]. Three callus featured genes

were located in the previously mapped regions (~3 Mb) [43], including

Zm00056a020765 encoding protein upstream of flowering locus C (FLC),

Zm00056a020767 encoding a zinc finger protein, and Zm00056a020775 encoding a caf-

feoyl shikimate esterase (CSE). The B73 CSE syntenic gene, Zm00001d042944, contains

a 120-bp MITE insertion at 141 bp upstream of the gene start, while the A188 CSE

gene does not (Additional file 1: Figure S32).
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The callus and seedling tissues were selected for examination of genome-wide DNA

methylation levels. The callus exhibited elevated methylation for all three sequence

contexts as compared to the seedling, 89.3% vs 85.2% on CG, 74.5% vs 71.9% on CHG,

and 3.2% vs 1.5% on CHH (Additional file 2: Table S10). The analysis of CG and CHG

methylation over all genes did not find major differences between callus and seedling

tissue (Fig. 7a, b). However, there were major differences in the level of CHH methyla-

tion (Fig. 7c). On average, there were no major changes in the level of CG or CHG

methylation over repetitive elements but there was a consistent trend for slightly higher

CG methylation callus for most classes of repetitive elements (p < 0.0001 from paired

t-tests, Fig. 7d, e). Similarly, CHH methylation was slightly higher for most classes of

repetitive elements with the most notable increase observed at MITE elements (p <

0.0001 from paired t-tests, Fig. 7f).

Differentially methylated regions (DMRs) were identified through comparison of the

DNA methylation profiles of callus and seedling. In total, 6927 CG DMRs, 9631 CHG

DMRs, and 11,275 CHH DMRs were identified (Additional file 2: Table S11, Additional

files 9, 10, and 11). Hypermethylation in callus relative to seedling was the predominant

type of DMRs for both CG and CHH methylation in both genic and intergenic regions

while CHG exhibited roughly equal proportions of hypermethylation and hypomethyla-

tion DMRs with more hypermethylation in genic regions and more hypomethylation in

intergenic regions (Fig. 7g). The analysis of the distribution of DMRs relative to genes

revealed that the CG DMRs were enriched near TSS regions while CHH DMRs tended

to be found in regions just upstream or downstream of genes, mirroring CHH island

distributions (Fig. 7h) [44, 45]. CHG DMRs exhibited different trends for localization

for hypermethylation and hypomethylated DMRs with hypermethylation DNAs

enriched at TSS and TTS regions and hypomethylated DMRs enriched in gene bodies

(Fig. 7h). The high frequency of some types of DMRs near the TSS led us to assess

whether these DMRs may be contributing to differential expression in callus relative to

seedling tissue. Genes with DMRs were enriched for being differential expression (DE)

in seedling relative to callus compared to genes without DMRs (χ2 = 20.9, p-value =

4.9e−6). Based on prior studies in maize, we expected that gains of CG or CHG methy-

lation near the TSS would be associated with down-regulation of expression while gains

of CHH upstream of the promoter might be associated with up-regulation of expres-

sion [46, 47]. We found that the DE genes with hypomethylated or hypermethylated

DMRs at most regions exhibited roughly similar numbers of up- and down-regulated

with exception at CG hypomethylation at 5′ upstream regions of genes and CHG hypo-

methylation in the gene body, both of which were associated with up-regulation of gene

expression in the callus (Fig. 7i, Additional file 2: Table S12). These results reveal dy-

namic changes in some types of DNA methylation in callus relative to seedling and a

marginal association of DNA methylation with gene expression changes.

Discussion
Here, the A188 genome assembly capitalized on long-read technologies, including

Nanopore single molecule reads and long-range optical mapping, which adds a new

high-quality reference genome to the collection of sequenced maize genomes [8–16].

The quality of the assembly was enhanced by the strategy of comparing read depths of

short read data from two independent DNA sources to filter contigs before the
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scaffolding. The use of the independent DNA sources reduced contamination from

DNA sequences of organelle genomes and microorganisms while preserving nuclear-

integrated organellar sequences. In addition, a novel approach for the discovery of gen-

ome structural variation based on quantitative comparison of depths of sequencing

reads, here named Comparative Genomic Read Depth or CGRD, was introduced. De-

tailed characterization of genomic structural variation in complex genomes such as

maize is challenging. Comparisons using complete genome sequences based on their

alignments would be an ideal method to reveal copy number variation and rearrange-

ments. However, technically, alignment-based methods still suffer from a low ability of

Fig. 7 DNA methylation in callus and seedling tissues. a–c Distribution of cytosine methylation in three
sequence contexts (CG, CHG, and CHH) around genes in two biological replicates of the callus (orange) and
two biological replicates of the seedling (green). An average methylation rate per window across all
examined genes was determined and plotted versus the window order. A window in the gene body is 1/
200 of the gene body. A window outside of the gene body is 20 bp. d–f Violin plots of methylation on
repetitive sequences. For each violin plot, the top half is the distribution of methylation in the callus and
the bottom half is the distribution of methylation in the seedling. Each dot represents the median of
methylation rates. Numbers stand for the mean methylation differences between the callus and the
seedling, which are color-coded with blue and red to represent increased methylation and decreased
methylation in the callus, respectively. All differences are significant (p-value < 0.0001) by paired t-test. g
Barplots of DMRs on genic regions, including 2 kb beyond each of TSS and TTS, and the rest of the
genome (intergenic regions). h Distribution of DMR sequences around genes. The definition of the gene
body is the same as described in a–c. i Proportions of DE genes up-regulated in hyper DMR and hypo DMR
regions (gene body, 1 kb 5′ upstream and 1 kb 3′ downstream regions). Numbers on top of bars are
numbers of DE genes. Stars indicate significance (p < 0.05) from χ2 tests for the independence of the DMR
and DE changing directions. In g, h, and i, hyper and hypo stand for increased and decreased methylation
in the callus relative to the seedling, respectively
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confident alignments of repetitive sequences. More critically, finding structural vari-

ation with assembled genome sequences is subject to the quality of assemblies. Unfor-

tunately, assemblies of most plant genomes or other large complex genomes are

generally not complete or error-free. B73Ref4, for example, is missing the topmost re-

gion of the short arm sequence of chromosome 6 (Additional file 1: Figure S13) and in-

cludes multiple assembly inversion errors. CGRD based on the comparison of depths of

short reads complements the approaches that rely on whole-genome alignments, in-

cluding SyRI [32]. In particular, the CGRD pipeline can detect copy number variation

missed by SyRI due to incomplete assembly at structurally complex regions. CGRD

identified a 1.8-Mb duplication at the Ga1 locus and a high-copy tandem duplication

of Wc1 in A188, both of which were missed by SyRI. The two methods are complemen-

tary in that CGRD captures unbalanced structural variation due to copy number vari-

ation rather than balanced structural variation that SyRI can detect. Therefore, the

combination of SyRI and CGRD provides an optimal strategy for the discovery of gen-

omic structural variation, which is critical for further characterization of their impacts

on gene expression and phenotypes.

Analysis of structural variation elucidated a repetitive structure of the ccd1 gene,

which, in A188, consists of 13 copies. The high copy number of ccd1 corresponds to

the high expression level of ccd1, which was previously observed and presumably leads

to a high activity of the carotenoid cleavage enzyme and enhanced carotenoid degrad-

ation [37]. Furthermore, the expression of y1, which encodes for phytoene synthase and

the entry reaction to the carotenoid pathway, in A188 is low during seed develop-

ment, while the y1 expression in B73 seeds is relatively high [48]. Both alleles were

highly expressed in some non-seed tissues, including leaves. The A188 y1 allele is

likely functional since a low but perceptible level of carotenoids is produced at

seed development. An additional minor kernel color QTL was identified from the

DH lines and concordant with the QTLs from multiple other B73-derived bi-

parental populations [49]. The underlying candidate gene, zep1 (Zm00001d003513)

encoding zeaxanthin epoxidase, was also identified in an earlier association study

[50]. However, functional validation for the involvement of zep1 in seed color is

needed. At the same time, the three QTL loci are not sufficient to fully determine

the kernel color variation of DH lines. Analysis with a larger B73xA188-derived

population may reveal additional loci influencing kernel colors as not all DH lines

shared the expected color based on the associated QTLs. In any event, carotenoid

levels were expected based on the allele types of y1 and ccd1 and supported the

hypothesis that higher levels of ccd1 and low y1 levels contribute to the differences

in seed color of A188 and B73.

An important goal of A188 characterization is to gain insight into plant tissue

culture. Development from a highly differentiated tissue to the callus for genetic

engineering purposes involves a process of dedifferentiation to gain pluripotency

[51]. The transition of differentiation status is, physiologically, stressful [52]. Soma-

clonal variation, including sterility, in plants produced through tissue culture may

be the product of DNA damaging stress responses [53]. Transcriptomic data from

this study revealed that, in fact, defense response genes were enriched among the

callus featured genes that were up-regulated in the callus as compared to any other

tissues. Hypermethylation is considered to be a protection mechanism against
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stresses, which enhances genome stability and safeguards genome integrity [54].

Our comparison between the callus and the seedling uncovered globally elevated

methylation in the callus in all three sequence contexts. Consistently, hypermethy-

lation in the callus relative to the immature embryo was found in a study that

used another maize inbred line and methylated DNA immunoprecipitation sequen-

cing (MeDIP-seq) [55]. In this study, 24 nt small RNA was shown to be positively

correlated with DNA methylation. In rice, CG hypermethylation was seen in 1-

and 3-year callus relative to the shoot in the rice mutant MET1-2, which encodes

a DNA methyltransferase with a major role in maintaining CG methylation. In

wildtype rice, however, only CHH hypermethylation was observed [52]. In our

study, the callus versus seedling comparison showed that the A188 MET1-2 homo-

log (Zm00056a035610) was ~2× up-regulated in the callus, and mop1

(Zm00056a013519), a homolog of RNA-dependent RNA polymerase 2 that is in-

volved in the production of 24 nt small RNA [56], was 5–6× up-regulated in the

callus, indicating that the transcriptomic machinery was regulated to enhance glo-

bal DNA methylation in the callus. In plants regenerated from calli, CG and CHG

methylation tended to be lost as compared to non-regenerated plants and many

methylation events were heritable [57]. Heritable hypomethylation in regenerated

plants was observed in an earlier maize study [58]. In rice, as compared to non-

regenerated plants in rice, pronounced hypomethylation was found in regenerated

plants from tissue culture [59]. The discrepant DNA methylation levels between re-

generated plants and calli indicated that most methylation gained from tissue cul-

ture is not stable or heritable. Collectively, DNA methylation was elevated during

the formation of the callus, likely due to the cellular defense responses. The major-

ity of DNA methylation gained appears to be demethylated during re-

differentiation, resulting in hypomethylated regenerated plants.

Conclusions
The genome of a regenerable maize inbred line A188 was assembled with long reads

and optical maps, producing a reference-quality genome sequence. Comparison of the

A188 genome with the reference B73 genome identified structural variants, including

those responsible for phenotypic discrepancies between A188 and B73. Examination of

DNA methylation and gene expression with the newly generated A188 reference gen-

ome found hypermethylation in the callus as compared with the seedling and the acti-

vation of defense genes in the callus, indicative of the defensive state for cellular

protection in the embryogenic callus.

Methods
Genetic materials

A188 (PI 693339) seeds were obtained from the North Central Regional Plant Introduc-

tion Station in Ames, IA. The A188 inbred line was derived from a cross between the

inbred line 4-29 and the inbred line 64, also named A48, followed by four generations

of backcross with 4-29. The line 4-29 was derived from the commercial variety Silver

King and the line 64 was from a northwestern dent line [1]. Double haploid lines were
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developed from the F1 of B73 (PI 550473) x A188 at the Doubled Haploid Facility at

Iowa State University.

Nanopore A188 whole-genome sequencing

A188 were grown in the greenhouse at 28°C and 23°C day/night, with a photoperiod of

14:10 h (light:dark). Nuclei were isolated from seedling leaves using a modified nucleus

isolation protocol [60] and dissolved in buffer G2 (Qiagen). The lysate was used for

DNA isolation with Qiagen DNeasy Plant Mini Kit (Qiagen) following the manufac-

turer protocol. A188 genomic DNA was size selected for 15–30 kb and above with the

BluePippin cassette kit BLF7510 (Sage Science) high-pass-filtering protocol, followed by

a library preparation with the SQK-LSK109 kit (Oxford Nanopore). Each DNA library

was loaded on an FLO-MIN106D flowcell and sequenced on MinION (Oxford Nano-

pore). The basecaller Guppy (version 3.4.4) was used to convert FAST5 raw data to

FASTQ data with default parameters.

Illumina A188 whole-genome sequencing

Three independent A188 leaf samples were collected for extracting nuclear DNAs. Two

were used for PCR-free paired-end 2x125 bp Illumina sequencing and one was used for

PCR-free paired-end 2x250 bp Illumina sequencing on Hiseq2500 at Novogene. In

addition, genomic DNA was extracted from A188 immature ears for additional PCR-

free paired-end 2x250 bp Illumina sequencing. Therefore, comparable 2x250 bp data

were generated from the leaf and ear tissue samples. The 2x125 bp Illumina sequencing

data were comparable with the previously generated 2x125 bp B73 whole-genome se-

quencing data (SRR4039069 and SRR4039070) [61], both of which were used for CGRD

analysis.

Assembly of Nanopore data via Canu

FASTQ Nanopore data were assembled with Canu (1.9) [62] with the following options:

“‘corMhapOptions=--threshold 0.8 --ordered-sketch-size 1000 --ordered-kmer-size 14’

correctedErrorRate=0.105 genomeSize=2.4g minReadLength=10000 minOverla-

pLength=800 corOutCoverage=60”.

Contigs filtering

Leaf and ear 2x250 bp data were aligned to the contigs with the “mem” module in bwa

(0.7.12-r1039) [63]. Uniquely mapped reads with less than 15% mismatches were used

to determine read count per contig with the “intersect” module of BEDTools (v2.29.2)

[64]. The log2 of the ratio of read counts normalized by using total reads of leaf and

ear samples was calculated for each contig. The contigs with a log2 value larger than

0.5 were considered as the contigs with variable counts from leaf and ear samples. The

contigs (N = 21) that had variable counts and less than 100 kb and were not anchored

to B73Ref4 via Ragoo (version 1.2) [65] were discarded. In addition, the contigs (N =

16) smaller than 15 kb were also discarded.

Through analysis of read counts, the contigs that had variable counts and matched

with the previously sequenced mitochondrion genome sequence (Genbank accession:

DQ490952.1) and the chloroplast genome sequence (Genbank accession: KF241980.1)
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were identified. One chloroplast contig and 13 mitochondrion contigs were found. The

chloroplast contig had almost identical sequences to the Genbank accession

KF241980.1. The failure of assembling mitochondrial contigs into one was likely due to

heterogeneous forms of mitochondria. In A188Ref1, the previously assembled

DQ490952.1 and KF241980.1, were used to represent the mitochondrion and chrolo-

plast genomes, respectively.

Sequence polishing of assembled contigs

After filtering contigs that were derived from organelles or contamination, the

remaining contigs were first polished with raw Nanopore reads that contained signal

information using Nanopolish (0.11.0) (github.com/jts/nanopolish). Briefly, Nanopore

reads were aligned with the contigs using the aligner Minimap2 (2.14-r892) [66]. Poly-

morphisms, including small insertions and deletions as well as single nucleotide poly-

morphisms, were called and corrected. The Nanopolish polishing was performed twice,

followed by twice polishing with Illumina sequencing data using Pilon (version 1.23)

[67]. In each Pilon polishing, reads were aligned to contigs with the module of “mem”

in bwa (0.7.12-r1039) [63]. Contigs were corrected with the parameters of “--minmq 40

--minqual 15” using Pilon.

Hybrid scaffolding with Bionano data and polished contigs

Bionano raw molecules were filtered to remove molecules less than 100 kb. The

remaining molecules were assembled into Bionano maps with the assembly module in

the software Bionano Tools (v1.0). Five times extension and merge iterations and noise

parameters were automatically determined by using the parameters of “-i 5 -y”. The hy-

brid scaffolding module from the Bionano Tools was used for scaffolding polished con-

tigs. The conflict filter level for both genome maps and sequences were set to 2 by

using the parameters of “-B 2 -N 2”.

Construction of a B73xA188 genetic map

Genomic DNA of DH lines was extracted by using BioSprint 96 DNA Plant Kit (Qia-

gen) and normalized to 10 ng/μL for Genotyping-By-Sequencing (GBS) modified from

tunable GBS [68]. Briefly, for each genomic DNA sample, the restriction enzyme

Bsp1286I (NEB) was used for DNA digestion for 3 h at 37°C, followed by ligation with

a barcoded single-stranded oligo with T4 DNA ligase (NEB) for 1 h at 16°C. Enzymatic

activity was inactivated at 65°C for 20 min and all samples of ligated DNA were pooled,

followed by purification with Qiagen PCR purification kit (Qiagen). The purified ligated

DNA was subject to PCR amplification with Q5 high-fidelity DNA polymerase (NEB),

followed by purification with Agencourt AMPure XP (Beckman Coulter). The final se-

quencing library product was prepared by size selection at the range of 200 to 400 bp

by a Pippin Prep run with 2% agarose gel cassettes (Sage Science). Illumina sequencing

was performed on a HiseqX 10 at Novogene (USA).

Raw FASTQ data were demultiplexed to multiple samples and trimmed to remove

barcode sequences and low-quality bases with Trimmomatic (version 0.38). Clean reads

were aligned to polished contigs with the “mem” module of bwa and uniquely mapped

reads with less than 8% mismatches were used for SNP analysis. SNPs were discovered
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by HaplotypeCaller of GATK (version 4.1.0.0) and filtered by SelectVariants of GATK

to select biallelic variants [69]. SNP sites with at most 80% missing data, at least 10%

minor allele frequency and at most 5% heterozygous rates remained. A segmentation

(or binning) algorithm was implemented to determine genotypes of chromosomal seg-

ments in each DH line [68]. Genotypes of bin markers of 100 DH lines were used to

construct a genetic map (BAgm.v01) with MSTmap [70].

Another genetic map was built using A188Ref1 as the reference genome with 137

DH lines (100 DH lines for BAgm.v01 and 37 additional DH lines). Recombination data

was inferred from the genetic map (BAgm.v02) based on A188Ref1 (Additional file 2:

Table S13).

ALLMaps to build pseudomolecules

The genetic map that was built with GBS markers was used for further scaffolding. The

GBS markers were developed using polished contigs as the reference genome. Each

scaffold harbored more than 10 markers. In total, 29 scaffolds were on the map. Scaf-

folds were aligned to B73Ref4 via NUCMer [71]. Based on the orientation of scaffolds

relative to B73Ref4 chromosomes, the order of markers in each linkage group was ei-

ther kept the same order or flipped to match their orders in B73Ref4. The software

ALLMaps (JCVI utility libraries v1.0.6) [72] was run with default parameters, construct-

ing 10 pseudomolecules corresponding to ten A188 chromosomes.

BUSCO assessment

Benchmarking Universal Single-Copy Orthologs (BUSCO) [22] was run in a mode of

“genome” to assess the completeness of the assembly with default parameters. BUSCO

was run in a mode of “transcriptome” to assess the completeness of the gene annota-

tion with default parameters. Both assessments used the Liliopsida database (liliopsida_

odb10) that consisted of 3278 conserved core genes.

Estimation of base errors using KAD analysis

The module “KADprofile.pl” in the KAD tool (version 0.1.7) [21] was used to estimate

errors in A188Ref1. The input read data were the merged trimmed Illumina 2x250 bp

reads from leaf and immature ears. The k-mer length of 47 mer was used.

Estimation of recombination rates

Genetic distances of non-overlapping 1-Mb windows were estimated. Non-overlapping

1-Mb windows were generated by the module of “makewindows” in BEDTools

(v2.29.2) [64]. The last window of each chromosome was discarded due to the smaller

size than 1 Mb. The prediction of genetic distance per window utilized a method devel-

oped previously [73]. Briefly, a generalized additive model (GAM) was used for the pre-

diction of the genetic distance of any physical interval.

The similar method was used to estimate recombination rates around each gene and

repetitive element. For example, for a given element, we first find the midpoint of the

element. The genetic positions were then predicted, by GAM, for the position 0.5 Mb

upstream and the position 0.5 Mb downstream. The distance of the genetic positions

was then used to represent the recombination context of the element.
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The recombination rates that are lower than 0.6 cM/Mb and higher than 3 cM/Mb

were categorized to low recombination and high recombination, respectively.

Callus induction from immature embryos

A188 ears were harvested at 11 days after pollination (DAP11), and surface-sterilized

for 30 min in 50% (v/v) bleach (6% sodium hypochlorite) that contains 3–4 drops of

Tween 20 followed by three washes in sterile distilled water. Immature embryos of size

1.0–1.5 mm were isolated and cultured on callus induction medium (CIM) media [74].

CIM was composed of Chu N6 basal medium with vitamins [75] supplemented with

2.3 g/L L-proline, 200 mg/L casein hydrolysate, 3% sucrose, 1 mg/L 2,4-dichlorophe-

noxyacetic acid, 3 g/L gelrite, pH 5.8. Subculture was conducted every 14 days. The 39-

day callus samples were collected for methylome and transcriptome analysis.

Illumina RNA-Seq, transcriptomic assembly, and differential expression

Thirty-three RNA samples were extracted from 11 diverse tissue types of A188 with

three biological replicates using RNeasy Plant Mini Kit (Qiagen) (Additional file 2:

Table S14). Briefly, the 11 tissues included the root and the above-ground of 10-day-

old seedling, three different parts of the 11th leaf tissue at V12, the meiotic tassel, an-

ther, and immature ear at V18, the endosperm and embryo 16 days after pollination,

and the callus after 39 days culture of DAP11 immature embryos. RNA quality control,

library preparation, and sequencing were performed on an Illumina Novaseq 6000 plat-

form at Novogene. Trimmomatic (version 0.38) [76] was used to trim the adaptor se-

quence and low-quality bases of RNA-Seq raw reads. The parameters used for the

trimming is “ILLUMINACLIP:trimming_db:3:20:10:1:true LEADING:3 TRAILING:3

SLIDINGWINDOW:4:13 MINLEN:40”. The trimming adaptor database (trimming_db)

includes the sequences: adaptor1, TACACTCTTTCCCTACACGACGCTCTTCCGAT

CT; adaptor2, GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT. Only paired

reads both of which were at least 40 bp after trimming were retained for further

analysis.

Trimmed reads were aligned to A188 (A188Ref1) using HISAT2 (version 2.1.0)

with the parameters of “-p 8 --dta --no-mixed --no-discordant -k 5 -x” [77]. Align-

ments whose paired reads were concordantly paired were kept. The software

StringTie2 (version 2.1.0) [78] was used to assemble the transcriptome with align-

ments from a dataset of each A188 sample with the default parameters. In total,

33 transcriptome assemblies from 33 samples were generated. All transcriptome as-

semblies were merged to build an A188 Illumina transcriptome assembly with the

merge function in StringTie2.

Differential expression of the callus relative to other tissue types

Trimmed reads were aligned to A188Ref1 with STAR (2.7.3a) [79]. Uniquely mapped

reads with at least 96% coverage and 96% identity were used for determining read

counts per gene. DESeq2 (version 1.26.0) [80] was used to identify differential expres-

sion between the callus and each of other tissue types. Multiple tests were corrected

with the FDR (false discovery rate) approach [81]. The FDR of 5% was set as the

threshold.
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Nanopore A188 cDNA direct sequencing

Three biological replicates of the seedling and callus samples from the same tissue sam-

ples used for Illumina RNA-Seq were sequenced by the Nanopore direct cDNA sequen-

cing protocol. Briefly, mRNA was first isolated from 10 μg total RNA with Poly(A)

RNA Selection Kit (Lexogen), followed by direct cDNA library preparation with SQK-

DCS109 kit (Oxford Nanopore). The protocol version for library preparation was DCS_

9090_v109_revB_04Feb2019. The cDNA library was loaded onto a FLO-MIN106D R9

flowcell and sequenced on MinION (Oxford Nanopore). FAST5 raw data was con-

verted to FASTQ data using the basecaller Guppy version 3.4.5 (Oxford Nanopore)

with default parameters. Two trimming steps were employed. Adapter sequence was

first trimmed by porechop (version 0.2.4) (https://github.com/rrwick/Porechop) with

parameters “--check_reads 10000 --adapter_threshold 100 --end_size 100 --min_

trim_size 5 --end_threshold 80 --extra_end_trim 1 --middle_threshold 100 --extra_

middle_trim_good_side 5 --extra_middle_trim_bad_side 50”, and then poly A was

trimmed by the software cutadapt (version 2.6) [82] with the options of “ -g T{12} -e

0.1 -a A{12} -n 100”. Trimmed reads were aligned to A188Ref1 as unstranded spliced

long reads using MiniMap2 (version 2.14) [83] with the parameter “-ax splice”.

Merged alignments from three replicates were input to StingTie2 for generating as-

sembled transcripts.

Genome annotation

The Maker (2.31.10) pipeline was used for genome annotation [84]. The genome was

masked by using Repeatmasker (4.0.7) [85] with the A188 repeat library built by the Ex-

tensive de novo TE Annotator (EDTA, v1.8.4) [86]. Two rounds of the maker predic-

tion were performed. At the first round, the A188 assembled transcripts and B73Ref4

protein data were used as EST and protein evidence, respectively. The parameters

“est2genome=1” and “protein2genome=1” were set to directly produce gene models

from transcripts and proteins. At this round, no ab initio gene predictors were used.

Prior to the second maker round, a snap model was trained using the confident gene

set from the first round. Gene models produced from round 1 were input as one of the

predicted gene models. These gene models were competed with gene models predicted

by three gene predictors: snap (2013_11_29) [87], augustus (3.3.3) [88], and fgenesh

(v.8.0.0) (softberry.com). ESTs from relative maize genotypes and proteins from closely

related species were provided as additional evidence. Gene model output from Maker

were further filtered. First genes matched with the following criteria “-evalue 1e-50

-qcov_hsp_perc 60” to the transposon database in Maker were filtered. Second, a tran-

script retained if it carried Pfam domains from the result of InterProScan (version 5.39-

77.0) and/or had an annotation edit distance (AED) less than 0.4, which measured the

level of discrepancy of an annotation from supporting evidence.

Functional annotation of transcripts

BLASTP was used to map all proteins to the SWISS-Prot database (https://www.

uniprot.org/) with the e-value cutoff of 1e−6. Gene ontology (GO) was extracted from

InterProScan.
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Identification of a major transcript per gene

For a gene containing multiple transcripts, a major transcript per gene was selected if a

transcript had the highest non-zero FPKM (Fragments Per Kilobase of transcript per

Million mapped reads) determined from Illumina RNA-Seq datasets of diverse tissues

by Cufflink (v2.2.1) [89], and/or the lowest BLASTP e-value to the SWISS-Prot data-

base, and/or the longest transcript length. The BLASTP e-value had a priority relative

to the transcript length. If data were not sufficient to make a decision, the one with the

longest length was selected.

Syntenic genes between A188 and B73

Syntenic genes were identified with MCscan (JCVI utility libraries v1.0.6) [90]. Major

transcripts were used as the input and the parameter “--cscore=.99” was used to find 1-

to-1 syntenic gene relationships.

Paralogs in A188 and orthologs between A188 and B73

Paralogs in A188 and orthologs between A188 and B73 were identified with OrthoMCL

[91]. Briefly, protein sequences of major transcripts with at least 20 amino acids were

used for all-to-all BLASTP with the e-value cutoff of 1e−5. The BLASTP result was in-

put to OrthoMCL to identify paralogous and orthologous groups.

Identification of gene clusters

A gene cluster was defined if at least three genes from a group of A188 paralogs identi-

fied by OrthoMCL were physically closely located on a chromosome. The maximum

distance is 250 kb for two neighboring genes in a cluster.

Annotation of NLR genes

The NLR genes of A188Ref1 were annotated using the NLR-Annotator pipeline [92].

Repeat annotation

EDTA (v1.8.4) [86] was used for repeat annotation with, maize as the “species” input,

the curated maize transposable element database from https://github.com/oushujun/

MTEC as the “curatedlib” input, and B73 coding sequences as the “cds’ input.

Analysis of NUMT and NUPT

The “nucmer” command from the software MUMmer 4 [93] was used to align the

A188 mitochondrion or chloroplast genomes to A188Ref1. For mitochondrial align-

ments, each required at least 5 kb and 95% identity. For chloroplast DNA alignments,

each required at least 3 kb and 95% identity based on the minimal requirement for a

sufficient FISH signal [26]. Multiple alignments with the distance less than 100 kb were

clustered into a block, considered to be a nuclear integration event.

Comparative genomic analysis via SyRI and CGRD

The “nucmer” command was used for whole-genome alignment of 10 chromosomal

pseudomolecules between A188Ref1 and B73Ref4. The parameter of “--maxmatch

-c 500 -b 500 -l 50” was used in the command “nucmer” and the parameter of “-i
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95 -l 1000 -m” in the command of delta-filter, which resulted in best alignments

with at least 1-kb matches and at least 95% identity between the two assembled

genomes. The “show-coords” command with the parameter of “-THrd” was run to

convert alignments to a tab-delimited flat text format. Alignment results were then

used for identifying genomic structural variation and nucleotide polymorphisms

through SyRI (v1.2) [32] with the parameter of “--allow-offset 100”. Syri analysis

discovered genome duplication, translocation, inversion, as well as syntenic, un-

aligned, divergent sequences. SNPs, small insertions, and deletions were identified

as well. SyRI analyses using minimap2 alignments were also performed between

A188Ref1 and each of the newly assembled genomes of NAM founders, including

version 5 of B73Ref5 [18], as well as genome assemblies of Mo17 [10] and SK

[11]. The parameter used for minimap2 alignments is “-ax asm10 -t 16 -K 800M -f

500 --eqx” [83].

The CGRD pipeline (v0.1) (github.com/liu3zhenlab/CGRD) was employed to find

copy number variation (CNV) through comparing depths of Illumina reads from A188

and B73 with the default parameters [33]. A value of the log2 read depth ratio per se-

quence segment (LogRD) is the indication for CNV. For a segment, the LogRD is close

to zero if sequences of two genotypes are identical and no CNVs. The sufficient devi-

ation of the mean of LogRD from zero is likely due to CNV or a high level of diver-

gence. CGRD was performed using A188Ref1 as the reference genome and identified

sequences of A188Ref1 showing conserved (B73 = A188), copy number plus (B73 >

A188), and copy number minus (B73 < A188) in B73 relative to A188. When B73Ref4

was used as the reference, the analysis found sequences of B73Ref4 showing conserved

(A188 = B73), copy number plus (A188 > B73), and copy number minus (A188 < B73)

in A188 relative to B73.

Identification of PAV or highly divergent sequences (HDS)

SyRI analysis listed B73Ref4 sequences that were not aligned to A188Ref1, and vice

versa, as well as insertion/deletion polymorphisms between the two chromosomal

sequences. Unaligned sequences or insertion/deletion polymorphisms identified by

SyRI were compared with CGRD segments. For each SyRI event, a supporting

score of read depth data from CGRD was determined by using the formula of
Pn

i
−LogRDi�Oi

L , where i represents the ith overlap between a CGRD segment and a SyRI

event; LogRD stands for the LogRD of the CGRD segment and only negative values

were taken into calculation; O is the overlapping length in bp; L is the length in

bp of the SyRI event; and n is the total number of overlaps. The resulting value

from the formula represents the degree of the differentiation in read depth be-

tween the two genotypes for the SyRI event. The higher the number, the more

confidence the PAV or HDS event. A SyRI event is considered to be a PAV or

HDS if a supporting score is larger than 3.

Identification of large inversion events

Inversion between A188Ref1 and B73Ref4 were revealed by SyRI. Large events with

both A188 and B73 sequences larger than 0.5 Mb were extracted. First, the inversion

sequences of B73Ref4 were aligned to B73Ref5 to confirm the inverted orientation
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relative to A188Ref1. For a given inversion, if >80% B73Ref4 sequences were

aligned to B73Ref5 in the plus orientation, the inversion was supported by

B73Ref5. If <20% B73Ref4 sequences aligned to B73Ref5 were in the plus orienta-

tion, the inversion was considered to not be supported by B73Ref5. Second, the re-

combination frequency between the start and the end of an inversion event was

estimated and adjusted to cM per Mb. Third, SNPs between the two genomes and

located on the inversion were identified. The common SNPs genotyped in the

maize 282 [94] population were extracted for determining linkage disequilibrium

(LD) between SNPs at a distance of 0.2–0.3 Mb. Vcftools (v0.1.17) [95] was

employed to calculate LD. The genome-wide LDs between SNPs at a distance of

0.2 Mb were determined as the control.

Structure analysis of inversions in maize HapMap2 population

The software STRUCTURE (v2.3.4) [96] was used to analyze the inference of popula-

tion structure for A188 inversions in maize HapMap2 population [97]. A188 and B73

SNPs between inversion regions were discovered by SyRI. HapMap2 genotyping data

overlapping with inversion SNPs were extracted and the subset of SNPs with the miss-

ing rate less than 20% were input for STRUCTURE analysis. The major alleles, minor

allele, and missing locus in SNP dataset were converted to 0, 1, and −1, respectively. K

= 2 as the cluster number and 10 replicate runs of the admixture model were used,

with a burn-in of 10,000 iterations and a run length of 20,000 steps.

Fluorescence in situ hybridization (FISH)

Mitotic and meiotic chromosomes were prepared as described by Koo and Jiang (2009)

with minor modifications [98]. Root tips were collected from seedling plants and

treated in a nitrous oxide gas chamber for 1.5 h, fixed overnight in ethanol:glacial acetic

acid (3:1), and then squashed in a drop of 45% acetic acid. Anthers were squashed in

45% acetic acid on a slide and checked under a phase microscope. All preparations

were stored at −70°C until use.

DNA probes of the CentC, Knob, Cent4 [99], and the probes for examining NUMTs,

the PME cluster, and a potential large inversion on chromosome 4 (Additional file 2:

Table S15) were labeled with digoxigenin-11-dUTP (Roche, Indianapolis, IN), biotin-

16-dUTP (Roche), and/or DNP-11-dUTP (PerkinElmer), depending on whether two or

three probes were used in the FISH experiment [99]. The FISH hybridization procedure

was according to a previously published protocol [100]. After post-hybridization

washes, the probes were detected with Alexa Fluor 488 streptavidin (Invitrogen) for

biotin-labeled probes and rhodamine-conjugated anti-digoxigenin for dig-labeled probe

(Roche). The DNP-labeled probe was detected with rabbit anti-DNP, followed by amp-

lification with a chicken anti-rabbit Alexa Fluor 647 antibody (Invitrogen). Chromo-

somes were counterstained with 4′,6-diamidino-2-phenylindole (DAPI) in Vectashield

antifade solution (Vector Laboratories). The images were captured with a Zeiss Axio-

plan 2 microscope (Carl Zeiss Microscopy LLC) using a cooled CCD camera Cool-

SNAP HQ2 (Photometrics) and AxioVision 4.8 software. The final contrast of the

images was processed using Adobe Photoshop CS5 software (Adobe).
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QTL mapping

Kernel colors of 125 B73xA188 DH lines were scored as 1 to 6 (1 = white, 6 = yellow,

and 2 to 5 indicated colors between white and yellow). QTL mapping of kernel color

was performed by using scanone function with the Haley-Knott regression method in

the R package rqtl [101]. The LOD cutoff was the 5% highest LOD value from 1000

permutations of phenotypic data.

qRT-PCR

qRT-PCR was used to measure the gene expression of ccd1 and y1 gene in genotypes

of A188 and B73 as well as two DH lines DH305 and DH312. Immature ears of the

four genotypes were harvested from the summer nursery in Manhattan Kansas at 16

days after pollination (DAP16). Fifteen kernels were randomly sampled from the middle

of an ear, five kernels of which were pooled as a biological replication for RNA isola-

tion. cDNA was synthesized with Verso cDNA Kit (Thermo Scientific) following the

manufacturer’s protocol. qRT-PCR was performed in a reaction of 10 μL with the

IQTM SYBR Green Supermix reagent (BioRad) on the CFX96 Real-Time PCR System

(BioRad). The thermocycling conditions for the PCR included an initial denaturation at

95°C for 3 min, followed by 40 cycles of denature at 95°C for 15 s, annealing, and ex-

tension at 60°C for 30 s. The housekeeping reference gene actin1 was used as the in-

ternal control. Cycle threshold values (Ct) of two technical replicates were averaged

and used to quantify relative gene expression levels. The relative expression levels of

each of ccd1 and y1 genes in each sample were calculated using the formula 100 x 2
actinCt-geneC, where actinCt and geneCt stand for the Ct values of actin1 and ccd1 (or

y1), respectively. The primers used are as follows: actin1: act1_qrt_2F and act1_qrt_2R;

ccd1: ccd1_qrt_5F and ccd1_qrt_5R; y1: y1_qrt_4F and y1_qrt_4R. Sequences of

primers are in Additional file 2: Table S15.

Kernel carotenoid content measurement

The seed total carotenoids of different genotypes with three biological replicates were

measured following the protocol described by Mishra and Singh [102]. Briefly, 10 maize

seeds from each replicate were milled into fine flour using mortar and pestle. After the

flour was filtered using muslin cloth, 0.5 g of the fine powder was dissolved into 6 mL

of 1% butylated hydroxytoluene. The well-mixed samples were treated following the

protocol [102], and the optical density at 450 nm of the treated sample was measured

using Genesys 20 spectrophotometer (Thermo scientific). The concentration of total

carotenoids was calculated using the formula described by Mishra and Singh [102].

Whole-genome bisulfite sequencing (WGBS)

Genomic DNA from two biological replicates of the seedling and callus samples that

were used for RNA-Seq were subjected to WGBS on a Novaseq 6000 at Novogene

(USA). A Bismark pipeline (v0.22.1) was adapted to process bisulfite sequencing DNA

methylation data [103]. Briefly, raw reads were subjected to Trimmomatic trimming

(v0.38) [76] to remove adaptor and poor-quality sequences. Bowtie2 (v2.3.5.1) [104]

built in Bismark was used for the alignment and alignments of duplicated reads were

removed before methylation calling. The methylation levels per cytosine site of all three
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sequence contexts (CG, CHG, and CHH) were determined, which were used for identi-

fying differentially methylated regions (DMRs) with the DSS R package (v2.34.0)

(github.com/haowulab/DSS).

DNA methylation around genes and on repetitive sequences

Genomic regions (gene body) from the translation start site (TSS) to the translation

termination site (TTS), which were based on genomic locations of major transcripts,

were equally divided into 200 windows. For each gene, the 2 kb in the 5′ upstream re-

gion and the 2 kb in the 3′ downstream region of each gene were also extracted. The

DNA methylation rate in three sequence contexts (CG, CHG, and CHH) on each win-

dow of the gene body or each 20 bp in upstream and downstream regions was separ-

ately determined to examine the distribution of DNA methylation on and around

genes.

DMRs were located in the three regions, 5′ upstream 1 kb, gene body, 3′ downstream

1 kb. For each region, the independence between changes of DNA methylation, in-

creased or decreased in the callus versus the seedling, and regulation in gene expres-

sion, up- or down-regulated in the callus versus the seedling from DE analysis, was

examined through χ2 statistical test. Tests were performed for all three methylation

types: CG, CHG, and CHH.

DNA methylation rates per 100 bp of repetitive sequences were determined. Annota-

tion of repetitive types was from EDTA and additional 45S rDNA alignment analysis.

Paired t-test was performed between the two tissues: callus and seedling.

Tissue network and principal component analyses of A188 tissues

The A188 tissue network was constructed with the R package WGCNA (version 1.66)

[105] using the expression of 29,222 genes in 33 RNA-Seq datasets from 11 A188 tissue

types. WGCNA was performed to cluster A188 tissue samples with the parameters

minModuleSize = 6 and soft-thresholding power = 9. The Gephi software (version

0.9.2) [106] was used to visualize tissue networks with the module and connectivity in-

formation from the WGCNA result. Principal component analysis (PCA) was also per-

formed using the R functions prcomp with the expression per gene averaged from three

replicates per tissue type.

Gene ontology (GO) enrichment analysis

The enrichment analyses were performed to determine if a certain GO was over-

represented in a selected group of genes. The resampling method in GOSeq [107] was

employed.
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Figure S1. Calli from immature embryos of A188, B73, and Hi-II A. a, b, c) White, 
compact, and nodulated somatic embryos and embryogenic callus from A188, 
brownish, loose and non-embryogenic callus from B73, and white, friable and 
embryogenic callus from Hi-II A after 28 days of culture in callus induction media. 

 



 

Figure S2. Phenotypes of B73, F1, and A188. a,b). Plants from 2020 summer nursery 
in Kansas (a) and Beijing (b).  

 

 



 

Figure S3. Histogram of lengths of Nanopore raw reads. MinION flowcells (N=31) 
were used to produce Nanopore reads for the A188 genome assembly, producing >264 
Gb total sequences. The median and N50 of read lengths are indicated by blue and red 
vertical lines, respectively. 

 



 

Figure S4. Contig filtering based on read depths. Log2 values of Illumina read depth 
ratios of seedling leaf to ear samples, log2(leaf:ear), were determined for each contig. 
Contigs that were not anchored to B73Ref4 and showed a high variability from 0 of 
log2(leaf:ear) and contigs less than 15 kb were discarded. The chloroplast contig (pt) 
and mitochondrial contigs (mt) were replaced by the A188 chloroplast complete 
sequence (Genbank accession KF241980.1) and the A188 mitochondrion complete 
sequence (Genbank accession DQ490952.1), respectively. 

 



 

Figure S5. Recombination of contexts around repeats. For each repeat type, the 
recombination rate (cM/Mb) of the surrounding 1 Mb context was estimated for each 
sequence on chromosomes. A violin plot of all sequences of each type was plotted with 
a dot to represent the median. 



 

Figure S6. Nuclear integration of chloroplast DNA. a). NUPT sequence on 10 
chromosomes of A188Ref1. Each dot on chromosomes designates a potential NUPT 
integration. Close-up alignments with the chloroplast genome are shown along NUPTs. 
Each alignment requires at least 3 kb match and 95% identity. b). Circos plot of 
alignments between the chloroplast (pt) genome and ten chromosomes. Purple 
highlights the large duplicated regions on pt. Gray bars locate NUPT positions. Note 
that the chromosomal scale is different from the pt scale. Numbers on the track are in 
Mb. 

 



 

Figure S7. Expression comparison of paralogs in high- and low-recombination 
regions. Pairs of paralogs of which one is located at a high-recombination region (H) 
and the other is located at a low-recombination region (L) were compared for their 
expression. Histograms of the log2 values of read counts ratio of H to L were plotted. 
Relatively symmetric distributions between positive and negative log2 values indicated 
that the genomic context of the gene location was not a major driver for gene 
expression.  

 



 

Figure S8. GO enrichments of PAV/HDS genes. Enriched GO terms in B73-specific 
PAV/HDS genes (a) and in A188-specific PAV/HDS genes (b). In each barplot, a blue 
bar stands for the number genes in the PAV/HDS gene set and the whole bar (blue and 
empty) stands for the total number of genes of the associated GO term. P-values are 
labeled on the top of each bar. Only the GO terms with the p-value smaller than 0.005 
and containing at least five PAV genes were plotted. 



 

 

Figure S9. SyRI and CGRD results on chromosome 1. CGRD results using 
A188Ref1 and B73Ref4 as the reference genomes were plotted on the top and bottom, 
respectively. Y-axis represents log2 values of ratios of read depths of B73 to A188, 
log2(B:A), or log2 values of ratios of read depths of A188 to B73, log2(A:B), signifying 
copy number variation (CNV). The SyRI result is displayed in between two CGRD 
results. Alignments of syntenic blocks larger than 10 kb and alignments of other 
rearrangements larger than 0.5 Mb are plotted. On each A188 and B73 chromosome, 
segments not aligned to the other genome (unaligned), segments divergent with the 
other genome in a high degree (divergent), and centromeres are highlighted. The same 
plotting strategy was applied to chromosome 2, 3, 5, 6, 7, 8, 9, and 10. 
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Figure S10. SyRI and CGRD results on chromosome 2. The red * labels well-
evidenced inversions. 

 



 

Figure S11. SyRI and CGRD results on chromosome 3. The red * labels a well-
evidenced inversion. 

 



 

Figure S12. SyRI and CGRD results on chromosome 5. The red * labels a well-
evidenced inversion. 

 



 

Figure S13. SyRI and CGRD results on chromosome 6. The arrow points at a 
relative conserved region (equal) between the two genomes. However, the region is 
missed in the B73Ref4. The newly assembled B73Ref5 has the region at the beginning 
of chromosome 6. 

 



 

Figure S14. SyRI and CGRD results on chromosome 7. 
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Figure S15. SyRI and CGRD results on chromosome 8.  

 

chr8

0 50 100 150

A188

B73

synteny
duplication

translocation
inversion

|
|

|unaligned
divergent

centromere

−8

−4

0

4

lo
g

2
(B

:A
)

−8

−4

0

4

lo
g

2
(A

:B
)

equal plus minus ungroup



 

Figure S16. SyRI and CGRD results on chromosome 9. The red * labels a well-
evidenced inversion. The arrow points at the B73 Wc1 region showing A188plus, which 
A188 has higher copy number as compared to B73.  

 



 

Figure S17. SyRI and CGRD results on chromosome 10. 
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Figure S18. FISH on an inversion candidate. Two probes (p102 and p108) were 
designed on the potential inversion and labeled with green and red fluorescent colors. 
The CentC probe was used to locate the centromere. The result indicated that both 
A188 and B73 had the same order of p102 and p108, which did not support the 
inversion. 

  



 

Figure S19. Large inversions on chromosomes 1 and 2. Inversions with at least 50 
kb between A188Ref1 and each of genome assemblies were plotted. B73 stands for the 
genome assembly of B73Ref5 and other NAM founder genome assemblies are in 
version 1. The Mo17 genome assembly is the version of CAU1.0 and the SK genome 
assembly is in version 1. Orange bars represent centromere positions. Arrows point at 
two well-supported inversions: ABinv2a and ABinv2b. 

  



 

Figure S20. Large inversions on chromosomes 3 and 4. Inversions with at least 50 
kb between A188Ref1 and each of genome assemblies were plotted. B73 stands for the 
genome assembly of B73Ref5 and other NAM founder genome assemblies are in 
version 1. The Mo17 genome assembly is the version of CAU1.0 and the SK genome 
assembly is in version 1. Orange bars represent centromere positions. Arrows point at 
two well-supported inversions: ABinv3a and ABinv4a. 

  



 

Figure S21. Large inversions on chromosomes 5 and 6. Inversions with at least 50 
kb between A188Ref1 and each of genome assemblies were plotted. B73 stands for the 
genome assembly of B73Ref5 and other NAM founder genome assemblies are in 
version 1. The Mo17 genome assembly is the version of CAU1.0 and the SK genome 
assembly is in version 1. Orange bars represent centromere positions. The arrow points 
at a well-supported inversion: ABinv5a. 

  



 

Figure S22. Large inversions on chromosomes 7 and 8. Inversions with at least 50 
kb between A188Ref1 and each of genome assemblies were plotted. B73 stands for the 
genome assembly of B73Ref5 and other NAM founder genome assemblies are in 
version 1. The Mo17 genome assembly is the version of CAU1.0 and the SK genome 
assembly is in version 1. Orange bars represent centromere positions. 

  



 

Figure S23. Large inversions on chromosomes 9 and 10. Inversions with at least 50 
kb between A188Ref1 and each of genome assemblies were plotted. B73 stands for the 
genome assembly of B73Ref5 and other NAM founder genome assemblies are in 
version 1. The Mo17 genome assembly is the version of CAU1.0 and the SK genome 
assembly is in version 1. Orange bars represent centromere positions. The arrow points 
at a well-supported inversion: ABinv9a. 

  



 

 

Figure S24. Structure analysis of three inversions in the maize Hapmap2 
population. The x-axis represents the maize or teosinte lines. The y-axis represents 
the admixture proportion of two sub-populations for each line. Arrows point at A188 and 
B73. The maize wild ancestors, teosinte lines, are highlighted in brown, and landrace 
lines are highlighted in magenta. 

 



 

Figure S25. Structure analysis of other three inversions in the maize Hapmap2 
population - II. The x-axis represents the maize or teosinte lines. The y-axis represents 
the admixture proportion of two sub-populations for each line. Arrows point at A188 and 
B73. The maize wild ancestors, teosinte lines, are highlighted in brown, and landrace 
lines are highlighted in magenta. 

 



  

Figure S26. Phenotypic and genotypic data of DH lines. a) A standard of kernel 
colors coded from 1-6. b) Counts of DH lines with kernel colors matching to standard 
codes for each genotype combination of three kernel color QTLs. 

 



 

Figure S27. Alignment between Y1 protein sequences of A188 and B73. Protein 
sequences of the transcript Zm00056a032392_T003 (A188) and the transcript 
Zm00001d036345_T001 (B73) were compared. Of 410 amino acids, 409 were identical. 
The polymorphic site is highlighted in red. 

 



 

Figure S28. Alignment of 5' and 3' flanking sequences of A188 y1 and B73 Y1 
alleles. Translation start sites and translation termination sites are highlighted in yellow. 
A (CCA)n microsatellite variation at the 5’ untranslated region is highlighted in green. 
Most gene body sequences are skipped. 

  



 

Figure S29. Genetic analysis of cob color. a) Plot of LODs from QTL analysis versus 
genetic positions of markers along ten chromosomes. The orange horizontal line 
indicates the LOD threshold from 1,000 permutation test. The arrow points at the 
genetic location of the P1 gene. b). Each rectangle box represents a gene with blue, 
tan, and red colors indicating plus, minus orientation, and P1 homologous genes. 

 



 

Figure S30. sample clustering and callus-featured genes a) Principal component 
analysis (PCA) results of gene expressions in 11 A188 tissues. The x-axis and y-axis 
represent the first component (PC1) and the second component (PC2), respectively. 
The numbers within the parentheses stand for the proportions of the variation of gene 
expressions explained by either PC1 or PC2. b) Enlarged PCA plot of the red box in a. 
c) The network of 33 RNA-Seq samples from 11 tissue types constructed based on their 
gene expression. Two major clusters were identified. One cluster (turquoise) includes 
callus, root, leaf base, ear, embryo, and endosperm; the other cluster (blue) includes 
leaf tip, leaf middle, and seedling. The leaf base, middle, and tip are three parts from 
base to tip from the same leaf. d) GO enrichment of callus featured genes. In each 
barplot, a blue bar stands for the number callus featured genes and the whole bar (blue 
and empty) stands for the total number of genes of the associated GO term. P-values 
are labeled on the top of each bar. Only the GO terms with the p-value smaller than 
0.01 and containing at least five callus featured genes were plotted. 



 

  

Figure S31. Heatmap plots of expression of callus-featured TF genes. The row and 
column represent the callus-featured TFs and tissues, respectively. The values of gene-
wise quantile-quantile normalized (qqnorm) gene expressions are color-coded. The 
qqnorm implemented by an R package “qqnorm” that normalizes gene expressions to a 
Gaussian distribution. Genes homologous to Baby boom and Wuschel2 are colored in 
blue and green, respectively. 

  



 

Figure S32. Alignment between Zm00056a020775 and the B73 homolog. Genomic 
sequences of the A188 gene Zm00056a020775, 800 bp before the gene start, and 800 
bp after the gene end were aligned with the B73Ref4 and the aligned region includes 
the homologous B73 gene Zm00001d042944. A 120 bp MITE insertion (orange) was 
found at 141 bp upstream of the gene start in B73. The transcripts of both genes were 
plotted from 5’ to 3’ and both are in the minus orientation in the reference genomes, 
which are indicated by “(-)”. The identity between aligned is color-coded. UTR: 
untranslated region; CDS: coding sequence. 
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