Menu

Research

Program Areas

© 2017 Barbara Ries

Biomedicine

Mutations in single genes cause more than 5000 human diseases. Doctors can only treat the symptoms of genetic disease and patients often need to take non-curative drugs for their entire life. Scientists have known the cause of many genetic disorders for years, but until now there has been no clear way to cure them. The IGI aims to use the ‘molecular scalpel’ Cas9 to permanently correct disease-causing mutations in cells, animal models, and eventually human patients.

Learn More

Agriculture

Our surging population size and changing climate severely threaten future food security. With the newfound ability to modify plant genomes easily and precisely with CRISPR-Cas enzymes, we have an unprecedented opportunity to improve agriculture. The IGI uses genome editing to create crops that are resistant to pests and diseases and less dependent upon chemical fertilizers. We will also produce more healthful and nutritious food. We are committed to ensuring that robust new crop varieties will be broadly available and benefit both the developed and developing worlds.

Learn More

Microbiology

Microbes are key to the next generation of transformative molecular biology discoveries. Many antibiotics, enzymes, drugs, and research tools like CRISPR-Cas9 are the repurposed natural products of microbes. To discover novel molecules and products, the IGI gathers genetic information from thousands of previously unknown bacteria and archaea. In parallel, we are developing revolutionary ways to directly manipulate individual genomes within the human gut microbiome to better understand and control the impact of microbes on our health.

Learn More

Technology

Unlocking the full potential of CRISPR genome editing requires continuous innovation. We need more options for safely and reliably delivering editing tools into agricultural crops and the parts of the human body that are harmed by mutations. The IGI is developing cross-cutting new approaches to accelerate development and delivery of therapeutics, agricultural engineering, and scientific discovery. We are building upon foundational CRISPR-Cas technologies to create more precise and powerful tools for manipulating the genome.

Learn More

Society

Global ethical conversations and regulations must keep pace with scientific progress. The ability to rapidly transform agriculture and biomedicine gives rise to new societal and environmental considerations. Research in social sciences and humanities, including ethics, law, policy, and economics, will allow us to more fully understand the potential impact genome editing will have on society. It is essential to support, encourage, and engage in dialogue to ensure the technology will benefit everyone.

Learn More
© 2017 Barbara Ries

Research Projects

The interdisciplinary nature of our projects, our collaborative atmosphere, and the immutable interconnectedness of humans, animals, plants, and microbes means that discoveries in one research area will often inform another. By pursuing fundamental questions in diverse yet intertwined fields, our breakthroughs will improve the health of both humanity and our planet.

View Research Projects